1,712
Views
0
CrossRef citations to date
0
Altmetric
Preliminary Communication

In Vivo Pharmacokinetics, Long-Term Biodistribution and Toxicology Study of Functionalized Upconversion Nanoparticles in Mice

, , , &
Pages 1327-1340 | Published online: 25 Oct 2011

Bibliography

  • Wang X , LiX, ZhangLet al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).
  • Daniel MC , AstrucD. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104, 293–346 (2004).
  • Liu Z , FanA, RakhraKet al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl. 48, 7668–7672 (2009).
  • Liu Z , TabakmanS, WelsherK, DaiH. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res.2, 85–120 (2009).
  • Garnett E , YangP. Light trapping in silicon nanowire solar cells. Nano Lett.10, 1082–1087 (2010).
  • Ferrari M . Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer5, 161–171 (2005).
  • Liu Z , PengR. Inorganic nanomaterials for tumor angiogenesis imaging. Eur. J. Nucl. Med. Mol. Imaging37, 147–163 (2010).
  • Liu Z , CaiWB, HeLNet al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol.2, 47–52 (2007).
  • Hoshino A , FujiokaK, OkuTet al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163–2169 (2004).
  • Jong WHD , HagensWI, KrystekP, BurgerMC, SipsAJ, GeertsmaRE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29, 1912–1919 (2008).
  • Fischer HC , ChanWCW. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol.18, 565–571 (2007).
  • Linkov I , SatterstromFK, CoreyLM. Nanotoxicology and nanomedicine: making hard decisions. Nanomed. Nanotech.4, 167–171 (2008).
  • Liu Z , DavisC, CaiW, HeL, ChenX, DaiH. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA105, 1410–1415 (2008).
  • Nyk M , KumarR, OhulchanskyyTY, BergeyEJ, PrasadPN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett.8, 3834–3838 (2008).
  • Yi GS , ChowGM. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater.16, 2324–2329 (2006).
  • Wang F , LiuX. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc.130, 5642–5643 (2008).
  • Cheng L , YangK, ZhangS, ShaoM, LeeS. Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res.3, 722–723 (2010).
  • Yu M , LiF, ChenZet al. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 81, 930–935 (2009).
  • Lim SF , RiehnR, RyuWSet al.: In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans. Nano Lett.6, 169–174 (2006).
  • Wang L , YanR, HuoZet al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44, 6054–6057 (2005).
  • Kobayashi H , KosakaN, OgawaMet al.: In vivo multiple color lymphatic imaging using upconverting nanocrystals. J. Mater. Chem.19, 6481–6484 (2009).
  • Xiong LQ , ChenZG, YuMX, LiFY, LiuC, HuangCH. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials30, 5592–5600 (2009).
  • Xiong L , ChenZ, TianQ, CaoT, XuC, LiF. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem.81, 8687–8694 (2009).
  • Qian HS , GuoHC, HoPCL, MahendranR, ZhangY. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small5, 2285–2290 (2009).
  • Chatterjee DK , YongZ. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine3, 73–82 (2008).
  • Kumar R , NykM, OhulchanskyyTY, FlaskCA, PrasPN. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater.19, 853–859 (2009).
  • Zhou J , SunY, DuX, XiongL, HuaH, LiF. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials31, 3287–3295 (2010).
  • Park YI , KimJH, LeeKTet al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009)
  • Wang C , ChengL, LiuZ. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials32, 1110–1120 (2011).
  • Hilderbrand SA , ShaoF, SalthouseC, MahmoodU, WeisslederaR. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun.28, 4188–4190 (2009).
  • Jalil RA , ZhangY. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials29, 4122–4128 (2008).
  • Hu H , XiongL, ZhouJ, LiF, CaoT, HuangC. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. Chem. Eur. J.15, 3577–3584 (2009).
  • Jalil RA , ZhangY. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials29, 4122–4128 (2008).
  • Xiong L , YangT, YangY, XuC, LiF. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials31, 7078–7085 (2010).
  • Mai H , ZhangY, SiRet al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).
  • Zhou M , NakataniE, GronenbergLSet al. Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconj. Chem. 18, 323–332 (2007).
  • Maltzahn1 GV , Park J-H, Agrawal A et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res.69, 3892–3900 (2009).
  • Yang K , ZhangS, ZhangG, SunX, Lee S-T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett.10, 3318–3323 (2010).
  • Wang F , HanY, LimCSet al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).
  • Akiyama Y , MoriT, KatayamaY, NiidomeT. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J. Cont. Rel.139, 81–84 (2009).
  • Liu Z , ChenK, DavisCet al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008).
  • Lankveld DPK , OomenAG, KrystekPet al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31, 8350–8361 (2010).
  • Sonavane G , TomodaK, MakinoK. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Coll. Surf. B Biointerfaces66, 274–280 (2008).
  • De Jong WH , HagensWI, KrystekP, BurgerMC, SipsAJ, GeertsmaRE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29, 1912–1919 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.