383
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Uptake and Transport of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles by Human Brain-Derived Endothelial Cells

, , &
Pages 39-53 | Published online: 22 Dec 2011

References

  • Arruebo M , Fernández-PachecoR, IbarraMR, SantamariaJ. Magnetic nanoparticles for drug delivery. Nano Today2, 22–32 (2007).
  • Juillerat-Jeanneret L . The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov. Today13, 1099–1106 (2008).
  • Weinstein JS , VarallyayCG, DosaEet al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 30, 15–35 (2010).
  • Bhaskar S , TianF, StoegerTet al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 7, 3 (2010).
  • Verma A , StellacciF. Effect of surface properties on nanoparticle–cell interactions. Small6, 12–21 (2010).
  • Hillaireau H , CouvreurP. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci.66, 2873–2896 (2009).
  • Nel A , XiaT, MädlerL, LiN. Toxic potential of materials at the nanolevel. Science311(5761), 622–627 (2006).
  • Xia T , KovochichM, BrantJet al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006).
  • M⊘ller P , JacobsenNR, FolkmannJKet al. Role of oxidative damage in toxicity of particulates. Free Radical Res. 44, 1–46 (2010).
  • Naqvi S , SamimM, AbdinMet al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomed. 5, 983–989 (2010).
  • Petri-Fink A , ChastellainM, Juillerat-JeanneretL, FerrariA, HofmannH. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials26, 2685–2694 (2005).
  • Cengelli F , MaysingerD, Tschuddi-MonnetFet al. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J. Pharm. Exp. Ther. 318, 108–116 (2006).
  • Hanessian S , GrzybJA, CengelliF, Juillerat-JeanneretL. Synthesis of chemically functionalized superparamagnetic nanoparticles as delivery vectors for chemotherapeutic drugs. Bioorg. Med. Chem.16, 2921–2931 (2008).
  • Cengelli F , GrzybJA, MontoroA, HofmannH, HanessianS, Juillerat-JeanneretL. Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin. ChemMedChem4, 988–997 (2009).
  • Petri-Fink A , SteitzB, FinkaA, SalaklangJ, HofmannH. Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur. J. Pharm. Biopharm.68, 129–137 (2008).
  • Chastellain M , PetriA, GuptaA, RaoKV, HofmannH. Superparamagnetic silica-iron oxide nanocomposites for application in hyperthermia. Adv. Eng. Mater.6, 235–241 (2004).
  • Schaller V , KrälingU, RusuCet al. Motion of nanometer sized magnetic particles in a magnetic field gradient. J. Appl. Phys. 104, 093918 (2008).
  • Kamau Chapman S , HassaPO, SteitzBet al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res. 34, e40 (2006).
  • Zara GP , CavalliR, BargoniA, FundaroA, VighettoD, GascoMR. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J. Drug Target.10, 327–335 (2002).
  • Gan CW , FengSS. Transferrin-conjugated nanoparticles of poly(lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials31, 7748–7757 (2010).
  • Liu Y , LiJ, ShaoKet al. A leptin derived 30-amino-acid peptide modified pegylated poly- l -lysine dendrigraft for brain targeted gene delivery. Biomaterials 31, 5246–5257 (2010).
  • Tosi G , VergoniAV, RuoziBet al. Sialic acid and gylycopeptides conjugated PLGA nanoparticles for central nervous system targeting: in vivo pharmacological evidence and biodistribution. J. Control Release 145, 49–57 (2010).
  • Huang R , KeW, HanLet al. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J. Cereb. Blood Flow Metab. 29, 1914–1923 (2009).
  • Kreuter J , ShamenkoD, PetrovVet al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target. 10, 317–325 (2002).
  • Kurakhmaeva KB , DjindjikhashviliIA, PetrovVEet al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J. Drug Target. 17, 564–574 (2009).
  • Ambruosi A , GelperinaS, KhalanskyA, TanskiS, TheisenA, KreuterJ. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J. Microencaps.23, 582–592 (2006).
  • Gelperina S , KhalanskyA, SkidanINet al. Toxicolological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol. Lett. 126, 131–141 (2002).
  • Sarin H , KanevskyAS, WuHet al. Effective transvascular delivery of nanoparticles across the blood–brain tumor barrier into malignant glioma cells. J. Transl. Med. 6, 80–95 (2008).
  • Veiseh O , SunC, FangCet al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res. 69, 6200–6207 (2009).
  • Ku S , YanF, WangY, SunY, YangN, YeL. The blood–brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochem. Biophys. Res. Commun.394, 871–876 (2010).
  • Chang J , JallouliY, KroubiM, YuanXBet al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int. J. Pharm. 379, 285–292 (2009).
  • Weiss CK , KohnleMW, LandfesterKet al. The first step into the brain: uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood–brain barrier permeation. ChemMedChem 3, 1395–1403 (2008).
  • Petri B , BootzA, KhalanskyAet al. Chemotherapy of brain tumor using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate)nanoparticles: revisiting the role of surfactant. J. Control Release 117, 51–58 (2007).
  • Gelperina S , MaksimenkoO, KhalanskyAet al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur. J. Pharm. Biopharm. 74, 157–163 (2010).
  • Meijas R , Perez-YagüeS, RocaAGet al. Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles. Nanomedicine 5, 397–408 (2010).
  • Buyukhatipoglu K , ClyneAM. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res.A96(1), 186–195 (2011).
  • Apopa PL , QianY, ShaoRet al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part. Fibre Toxicol. 6, 1 (2009).
  • Soenen SJH , HimmelreichU, NuyttenN, De Cuyper M. Cytotoxic effect of iron oxide nanoparticles and implications for safety of cell labeling. Biomaterials32, 195–205 (2011).
  • Hekmatara T , BernreutherC, KhalanskyASet al. Efficient systemic therapy of rat glioblastoma by nanoparticle-bound doxorubicin is due to antiangiogenic effects. Clin. Neuropathol. 28, 153–164 (2009).
  • Gil ES , LiJ, LoweTL. Quarternary ammonium β-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood–brain barrier. Biomacromolecues10, 505–516 (2009).
  • Ulbrich K , HekmataraT, HerbertE, KreuterJ. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm.71, 251–256 (2009).
  • Zensi A , BegleyD, PontikisCet al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons. J. Control Release 137, 78–86 (2009).
  • Zensi A , BegleyD, PontikisCet al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood–brain barrier and enter the rodent brain. J. Drug Target. 18, 842–848 (2010).
  • Wagner S , KufleitnerJ, ZensiAet al. Nanoparticulate transport of oximes over an in vitro blood–brain barrier model. PLoS ONE 5, e14213 (2010).
  • Cengelli F , VoinescoF, Juillerat-JeanneretL. Interaction of cationic ultrasmall superparamagnetic iron oxide nanoparticles with human melanoma cells. Nanomedicine5, 1075–1087 (2010).
  • Fiaux H , KuntzDA, HoffmanDet al. Functionalized pyrrolidine inhibitors of human α-mannosidases II in cancer: optimizing the fit to the active site. Bioorg. Med. Chem. 16, 7337–7346 (2008).
  • Lao F , ChenL, LiWet al. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano 3, 3358–3368 (2009).
  • Liu HL , HuaMY, YangHWet al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl Acad. Sci. USA 107, 15205–15210 (2010).
  • Wang ZH , WangZY, SunCS, WangCY, JiangTY, WangSL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials31, 908–915 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.