203
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Catastrophic Inflammatory Death of Monocytes and Macrophages by Overtaking of A Critical Dose of Endocytosed Synthetic Amorphous Silica Nanoparticles/Serum Protein Complexes

, , , , &
Pages 1101-1126 | Received 09 Mar 2012, Accepted 03 Aug 2012, Published online: 25 Jun 2013

References

  • Krug HF , WickP. Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. Engl.50(6), 1260–1278 (2011).
  • Oberdorster G , OberdorsterE, OberdorsterJ. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.113(7), 823–839 (2005).
  • Lunov O , SyrovetsT, LoosCet al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5(3), 1657–1669 (2011).
  • Hornung V , BauernfeindF, HalleAet al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9(8), 847–856 (2008).
  • Gilberti RM , JoshiGN, KnechtDA. The phagocytosis of crystalline silica particles by macrophages. Am. J. Respir. Cell Mol. Biol.39(5), 619–627 (2008).
  • Park EJ , ParkK. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett.184(1), 18–25 (2009).
  • Napierska D , ThomassenLC, LisonD, MartensJA, HoetPH. The nanosilica hazard: another variable entity. Part. Fibre Toxicol.7(1), 39 (2010).
  • Xie G , SunJ, ZhongG, ShiL, ZhangD. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol.84(3), 183–190 (2010).
  • Drescher D , Orts-GilG, LaubeGet al. Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal. Bioanal. Chem. 400(5), 1367–1373 (2011).
  • Ye Y , LiuJ, ChenM, SunL, LanM. In vitro toxicity of silica nanoparticles in myocardial cells. Environ. Toxicol. Pharmacol.29(2), 131–137 (2010).
  • Liu X , SunJ. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials31(32), 8198–8209 (2010).
  • Chang JS , ChangKL, HwangDF, KongZL. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol.41(6), 2064–2068 (2007).
  • Lin W , HuangYW, ZhouXD, MaY. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol.217(3), 252–259 (2006).
  • Rabolli V , ThomassenLC, UwambayinemaF, MartensJA, LisonD. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicol. Lett.206(2), 197–203 (2011).
  • Mohamed BM , VermaNK, Prina-MelloAet al. Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. J. Nanobiotechnology 9, 29 (2011).
  • Herd HL , MaluginA, GhandehariH. Silica nanoconstruct cellular toleration threshold in vitro. J. Control. Release153(1), 40–48 (2011).
  • Costantini LM , GilbertiRM, KnechtDA. The phagocytosis and toxicity of amorphous silica. PLoS ONE6(2), e14647 (2011).
  • Al-Rawi M , DiabateS, WeissC. Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Arch. Toxicol.85(7), 813–826 (2011).
  • Stayton I , WiniarzJ, ShannonK, MaY. Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Anal. Bioanal. Chem.394(6), 1595–1608 (2009).
  • Panas A , MarquardtC, NalcaciOet al. Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology doi: 10.3109/17435390.652206) (2012) (Epub ahead of print).
  • Tavano R , FranzosoS, CecchiniPet al. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J. Leukoc. Biol. 86(1), 143–153 (2009).
  • Franzoso S , MazzonC, SztukowskaMet al. Human monocytes/macrophages are a target of Neisseria meningitidis adhesin A (NadA). J. Leukoc. Biol. 83(5), 1100–1110 (2008).
  • Leanza L , HenryB, SassiNet al. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol. Med. 4(7), 577–593 (2012).
  • Nuutila J , LiliusEM. Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells. Cytometry A65(2), 93–102 (2005).
  • Lu X , QianJ, ZhouHet al.: In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int. J. Nanomedicine6, 1889–1901 (2011).
  • Ye Y , LiuJ, XuJ, SunL, ChenM, LanM. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. In Vitro24(3), 751–758 (2010).
  • Miao EA , RajanJV, AderemA. Caspase-1-induced pyroptotic cell death. Immunol. Rev.243(1), 206–214 (2011).
  • Ohkuma S , PooleB. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl Acad. Sci. USA75(7), 3327–3331 (1978).
  • Hamilton RF Jr, Thakur SA, Mayfair JK, Holian A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J. Biol. Chem.281(45), 34218–34226 (2006).
  • Thakur SA , HamiltonR Jr, Pikkarainen T, Holian A. Differential binding of inorganic particles to MARCO. Toxicol. Sci.107(1), 238–246 (2009).
  • Morishige T , YoshiokaY, InakuraHet al. The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta production, ROS production and endosomal rupture. Biomaterials 31(26), 6833–6842 (2010).
  • Waters KM , MasielloLM, ZangarRCet al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol. Sci. 107(2), 553–569 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.