369
Views
3
CrossRef citations to date
0
Altmetric
Review

Emerging Engineered Magnetic Nanoparticulate Probes for Molecular MRI of Atherosclerosis: How Far Have We Come?

, , &
Pages 899-916 | Published online: 26 Jun 2012

References

  • Kanwar RK , KanwarJR, WangD, OrmrodDJ, KrissansenGW. Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol.21(12), 1991–1997 (2001).
  • Hansson GK . Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352(16), 1685–1695 (2005).
  • Naghavi M , LibbyP, FalkEet al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14), 1664–1672 (2003).
  • Burke AP , FarbA, MalcomGT, LiangYH, SmialekJ, VirmaniR. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med.336(18), 1276–1282 (1997).
  • Murray CJL , LopezAD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet349(9064), 1498–1504 (1997).
  • Libby P , AikawaM. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat. Med.8(11), 1257–1262 (2002).
  • Lamon BD , HajjarDP. Inflammation at the molecular interface of atherogenesis: an anthropological journey. Am. J. Pathol.173(5), 1253–1264 (2008).
  • Glass CK , WitztumJL. Atherosclerosis. The road ahead. Cell104(4), 503–516 (2001).
  • Osborn EA , JafferFA. The year in molecular imaging. JACC Cardiovasc. Imaging3(11), 1181–1195 (2010).
  • Kanwar RK , ChaudharyR, TsuzukiT, KanwarJR. Emerging engineered magnetic nanoparticulate probes for targeted magnetic resonance imaging of atherosclerotic plaque macrophages. Nanomedicine (Lond.)7(5), 735–749(2012).
  • Gimbrone MA , TopperJN, NagelT, AndersonKR, Garcia-CardeñaG. Endothelial dysfunction, hemodynamic forces, and atherogenesisa. Ann. NY Acad. Sci.902(1), 230–240 (2000).
  • Douglas G , ChannonKM. The pathogenesis of atherosclerosis. Medicine38(8), 397–402 (2010).
  • Andrew CN . An overview of the vascular response to injury: a tribute to the late Russell Ross. Toxicol. Lett.112–113(0), 519–529 (2000).
  • Lusis AJ . Atherosclerosis. Nature407(6801), 233–241 (2000).
  • Libby P . Current concepts of the pathogenesis of the acute coronary syndromes. Circulation104(3), 365–372 (2001).
  • Bonetti PO , LermanLO, LermanA. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol.23(2), 168–175 (2003).
  • Diodati JG , DakakN, GilliganDM, QuyyumiAA. Effect of atherosclerosis on endothelium-dependent inhibition of platelet activation in humans. Circulation98(1), 17–24 (1998).
  • Anderson TJ . Assessment and treatment of endothelial dysfunction in humans. J. Am. Coll. Cardiol.34(3), 631–638 (1999).
  • Kanwar JR , KanwarRK, BurrowH, BaratchiS. Recent advances on the roles of NO in cancer and chronic inflammatory disorders. Curr. Med. Chem.16(19), 2373–2394 (2009).
  • De Caterina R , LibbyP, PengHBet al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96(1), 60–68 (1995).
  • Erling F . Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol.47(Suppl. 8), C7–C12 (2006).
  • Tabas I , WilliamsKJ, BorenJ. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation116(16), 1832–1844 (2007).
  • Xu Q . Role of heat shock proteins in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.22(10), 1547–1559 (2002).
  • Morimoto RI , KlineMP, BimstonDN, CottoJJ. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem.32, 17–29 (1997).
  • Kleindienst R , XuQ, WilleitJ, WaldenbergerFR, WeimannS, WickG. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am. J. Pathol.142(6), 1927–1937 (1993).
  • Bielecka-Dabrowa A , BarylskiM, MikhailidisDP, RyszJ, BanachM. HSP 70 and atherosclerosis – protector or activator? Expert Opin. Ther. Targets13(3), 307–317 (2009).
  • Schett G , XuQ, AmbergerAet al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J. Clin. Invest. 96(6), 2569–2577 (1995).
  • Pockley AG , WuR, LemneC, KiesslingR, De Faire U, Frostegard J. Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension36(2), 303–307 (2000).
  • Halcox JP , DeanfieldJ, Shamaei-TousiAet al. Circulating human heat shock protein 60 in the blood of healthy teenagers: a novel determinant of endothelial dysfunction and early vascular injury? Arterioscler. Thromb. Vasc. Biol. 25(11), e141–142 (2005).
  • Herz I , RossoR, RothA, KerenG, GeorgeJ. Serum levels of anti-heat shock protein 70 antibodies in patients with stable and unstable angina pectoris. Acute Card. Care8(1), 46–50 (2006).
  • Hansson GK , LibbyP. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol.6(7), 508–519 (2006).
  • Mandal K , JahangiriM, XuQ. Autoimmunity to heat shock proteins in atherosclerosis. Autoimmun. Rev.3(2), 31–37 (2004).
  • Afek A , GeorgeJ, GilburdBet al. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J. Autoimmun. 14(2), 115–121 (2000).
  • Rigano R , ProfumoE, ButtariBet al. Heat shock proteins and autoimmunity in patients with carotid atherosclerosis. Ann. NY Acad. Sci. 1107, 1–10 (2007).
  • Langille B , O‘DonnellF. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science231(4736), 405–407 (1986).
  • Joris I , ZandT, MajnoG. Hydrodynamic injury of the endothelium in acute aortic stenosis. Am. J. Pathol.106(3), 394–408 (1982).
  • Walpola PL , GotliebAI, CybulskyMI, LangilleBL. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol.15(1), 2–10 (1995).
  • Zand T , HoffmanAH, SavilonisBJet al. Lipid deposition in rat aortas with intraluminal hemispherical plug stenosis: a morphological and biophysical study. Am. J. Pathol. 155(1), 85–92 (1999).
  • Vallance P , ChanN. Endothelial function and nitric oxide: clinical relevance. Heart85(3), 342–350 (2001).
  • Chatzizisis YS , CoskunAU, JonasM, EdelmanER, FeldmanCL, StonePH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol.49(25), 2379–2393 (2007).
  • Borén J , OlinK, LeeI, ChaitA, WightTN, InnerarityTL. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest.101(12), 2658–2664 (1998).
  • Knowles JW , ReddickRL, JennetteJC, SheselyEG, SmithiesO, MaedaN. Enhanced atherosclerosis and kidney dysfunction in eNOS(-/-) apoE(-/-) mice are ameliorated by enalapril treatment. J. Clin. Invest.105(4), 451–458 (2000).
  • Hansson GK , HermanssonA. The immune system in atherosclerosis. Nat. Immunol.12(3), 204–212 (2011).
  • Auffray C , FoggD, GarfaMet al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838), 666–670 (2007).
  • Kol A , BourcierT, LichtmanAH, LibbyP. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J. Clin. Invest.103(4), 571–577 (1999).
  • Ellins E , Shamaei-TousiA, SteptoeAet al. The relationship between carotid stiffness and circulating levels of heat shock protein 60 in middle-aged men and women. J. Hypertens. 26(12), 2389–2392 (2008).
  • Zernecke A , ShagdarsurenE, WeberC. Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol.28(11), 1897–1908 (2008).
  • Boring L , GoslingJ, ClearyM, CharoIF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394(6696), 894–897 (1998).
  • Gu L , OkadaY, ClintonSKet al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell. 2(2), 275–281 (1998).
  • Watanabe T , FanJ. Atherosclerosis and inflammation mononuclear cell recruitment and adhesion molecules with reference to the implication of ICAM-1/LFA-1 pathway in atherogenesis. Int. J. Cardiol.66(Suppl. 1), S45–S53; discussion S55 (1998).
  • Blankenberg S , BarbauxS, TiretL. Adhesion molecules and atherosclerosis. Atherosclerosis170(2), 191–203 (2003).
  • Zernecke A , LiehnEA, FraemohsLet al. Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice. Arterioscler. Thromb. Vasc. Biol. 26(2), e10–e13 (2006).
  • McLaren JE , MichaelDR, AshlinTG, RamjiDP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog. Lipid Res.50(4), 331–347 (2011).
  • Nakashima Y , RainesEW, PlumpAS, BreslowJL, RossR. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol.18(5), 842–851 (1998).
  • Kontush A , ChapmanMJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev.58(3), 342–374 (2006).
  • Tabas I . Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol.10(1), 36–46 (2010).
  • Packard RR , LibbyP. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin. Chem.54(1), 24–38 (2008).
  • Rudijanto A . The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones.39(2), 86–93 (2007).
  • Mallat Z , TalebS, Ait-OufellaH, TedguiA. The role of adaptive T cell immunity in atherosclerosis. J. Lipid Res.50(Suppl.), S364–S369 (2009).
  • Moreno PR , Purushothaman K-R, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation113(18), 2245–2252 (2006).
  • De Boer OJ , Van Der Wal AC, Teeling P, Becker AE. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization? Cardiovasc. Res.41(2), 443–449 (1999).
  • Ehara S , KobayashiY, YoshiyamaMet al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction. Circulation 110(22), 3424–3429 (2004).
  • Tedgui A , MallatZ. Apoptosis as a determinant of atherothrombosis. Thromb. Haemost.86(1), 420–426 (2001).
  • Schaar JA , MullerJE, FalkEet al. Terminology for high-risk and vulnerable coronary artery plaques. Eur. Heart J. 25(12), 1077–1082 (2004).
  • Sukhova GK , SchonbeckU, RabkinEet al. Evidence for increased collagenolysis by interstitial collagenases 1 and -3 in vulnerable human atheromatous plaques. Circulation 99(19), 2503–2509 (1999).
  • Galis ZS , SukhovaGK, LarkMW, LibbyP. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest.94, 2493–2503 (1994).
  • Morishige K , ShimokawaH, MatsumotoYet al. Overexpression of matrix metalloproteinase-9 promotes intravascular thrombus formation in porcine coronary arteries in vivo. Cardiovasc. Res. 57(2), 572–585 (2003).
  • Lipinski M j, Fuster V, Fisher Ea, Fayad Za. Technology insight: targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nat. Clin. Pract. Cardiovasc. Med.1, 48–55 (2004).
  • Chen W , CormodeDP, FayadZA, MulderWJM. Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3(2), 146–161 (2011).
  • Kelly KA , AllportJR, TsourkasA, Shinde-PatilVR, JosephsonL, WeisslederR. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res.96(3), 327–336 (2005).
  • Nahrendorf M , JafferFA, KellyKAet al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114(14), 1504–1511 (2006).
  • Kang HW , TorresD, WaldL, WeisslederR, BogdanovAA. Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab. Invest.86(6), 599–609 (2006).
  • Woollard KJ , Chin-DustingJ. Therapeutic targeting of P-selectin in atherosclerosis. Inflamm. Allergy Drug Targets6(1), 69–74 (2007).
  • Jacobin-Valat M-J , Deramchia K, Mornet S et al. MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed.24(4), 413–424 (2011).
  • Perez-Balderas F , DavisBG, VankasterenSI. New biodegradable multimeric MPIO contrast agent shows rapid in vitro and in vivo degradation and high sensitivity contrast. Proc. Intl. Soc. Mag. Reson. Med.19, 1689 (2011).
  • McAteer MA , SchneiderJE, AliZAet al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler. Thromb. Vasc. Biol. 28(1), 77–83 (2008).
  • McAteer MA , AkhtarAM, Von Zur Muhlen C, Choudhury RP. An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis209(1), 18–27 (2010).
  • Alsaid H , De Souza G, Bourdillon M-C et al. Biomimetic MRI contrast agent for imaging of inflammation in atherosclerotic plaque of apoE-/- mice: a pilot study. Invest. Radiol.44(3), 151–158. (2009).
  • Smith B , HeverhagenJ, KnoppMet al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed. Microdevices 9(5), 719–727 (2007).
  • Sosnovik DE , SchellenbergerEA, NahrendorfMet al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn. Reson. Med. 54(3), 718–724 (2005).
  • Kanwar JR , MahidharaG, KanwarRK. Antiangiogenic therapy using nanotechnological-based delivery system. Drug Discov. Today16(5–6), 188–202 (2011).
  • Kerwin WS , O‘BrienKD, FergusonMS, PolissarN, HatsukamiTS, YuanC. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology241(2), 459–468 (2006).
  • Winter PM , MorawskiAM, CaruthersSDet al. Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 108(18), 2270–2274 (2003).
  • Winter PM , NeubauerAM, CaruthersSDet al. Endothelial αvβ3 integrin–targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26(9), 2103–2109 (2006).
  • Winter PM , CaruthersSD, ZhangH, WilliamsTA, WicklineSA, LanzaGM. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc. Imaging1(5), 624–634 (2008).
  • Von Zur Muhlen C , Von Elverfeldt D, Moeller JA et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation118(3), 258–267 (2008).
  • Von Zur Muhlen C , PeterK, AliZAet al. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein IIb/IIIa. J. Vasc. Res. 46(1), 6–14 (2009).
  • Wickline SA , NeubauerAM, WinterPM, CaruthersSD, LanzaGM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging25(4), 667–680 (2007).
  • Flacke S , FischerS, ScottMJet al. Novel MRI contrast agent for molecular imaging of fibrin. Circulation 104(11), 1280–1285 (2001).
  • Yu X , Song S-K, Chen J et al. High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn. Reson. Med.44(6), 867–872 (2000).
  • Pan D , SenpanA, CaruthersSDet al. Sensitive and efficient detection of thrombus with fibrin-specific manganese nanocolloids. Chem. Commun. (22), 3234–3236 (2009).
  • Pan D , CaruthersSD, HuGet al. Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets. J. Am. Chem. Soc. 130(29), 9186–9187 (2008).
  • Senpan A , CaruthersSD, RheeIet al. Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano 3(12), 3917–3926 (2009).
  • McCarthy JR , PatelP, BotnaruI, HaghayeghiP, WeisslederR, JafferFA. Multimodal nanoagents for the detection of intravascular thrombi. Bioconj. Chem.20(6), 1251–1255 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.