1,025
Views
0
CrossRef citations to date
0
Altmetric
Research Article

RNAi-Mediated Inhibition of Apoptosis Fails to Prevent Cationic Nanoparticle-Induced Cell Death in Cultured Cells

, , &
Pages 1651-1664 | Received 18 Mar 2013, Accepted 22 Jul 2013, Published online: 16 Oct 2014

References

  • Patel S , BhirdeAA, RuslingJF, ChenX, GutkindJS, PatelV. Nano delivers big: designing molecular missiles for cancer therapeutics. Pharmaceutics3(1), 34–52 (2011).
  • Shmueli RB , OhnakaM, MikiAet al. Long-term suppression of ocular neovascularization by intraocular injection of biodegradable polymeric particles containing a serpin-derived peptide. Biomaterials 34(30), 7544–7551 (2013).
  • Wang Z , NiuG, ChenX. Polymeric materials for theranostic applications. Pharm. Res. doi: 10.1007/s11095-013-1103-1107 (2013) (Epub ahead of print).
  • Meyers JD , DoaneT, BurdaC, BasilionJP. Nanoparticles for imaging and treating brain cancer. Nanomedicine (Lond.)8(1), 123–143 (2013).
  • Oberdörster G , StoneV, DonaldsonK. Toxicology of nanoparticles: a historical perspective. Nanotoxicology1(1), 2–25 (2007).
  • Aramaki Y , TakanoS, TsuchiyaS. Cationic liposomes induce macrophage apoptosis through mitochondrial pathway. Arch. Biochem. Biophys.392(2), 245–250 (2001).
  • Iwaoka S , NakamuraT, TakanoS, TsuchiyaS, AramakiY. Cationic liposomes induce apoptosis through p38 MAP kinase–caspase–8-Bid pathway in macrophage-like RAW264.7 cells. J. Leukoc. Biol.79(1), 184–191 (2006).
  • Lv H , ZhangS, WangB, CuiS, YanJ. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release114(1), 100–109 (2006).
  • Bexiga MG , VarelaJA, WangFet al. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5(4), 557–567 (2011).
  • Xia T , KovochichM, LiongM, ZinkJI, NelAE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano2(1), 85–96 (2008).
  • Mcstay GP , SalvesenGS, GreenDR. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ.15(2), 322–331 (2008).
  • Rual JF , Hirozane-KishikawaT, HaoTet al. Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res. 14 (10B), 2128–2135 (2004).
  • Fire A , XuS, MontgomeryMK, KostasSA, DriverSE, MelloCC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806–811 (1998).
  • Rana TM . Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol.8(1), 23–36 (2007).
  • Kim DH , RossiJJ. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet.8(3), 173–184 (2007).
  • Neumann B , WalterT, HericheJKet al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289), 721–727 (2010).
  • Simpson JC , JoggerstB, LaketaVet al. Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nat. Cell Biol. 14(7), 764–774 (2012).
  • Aza-Blanc P , CooperCL, WagnerK, BatalovS, DeverauxQL, CookeMP. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell12(3), 627–637 (2003).
  • Darlington TK , NeighAM, SpencerMT, NguyenOT, OldenburgSJ. Nanoparticle characteristics affecting environmental fate and transport through soil. Environ. Toxicol. Chem.28(6), 1191–1199 (2009).
  • Calderon-Garciduenas L , SoltAC, Henriquez-RoldanCet al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood–brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicol. Pathol. 36(2), 289–310 (2008).
  • Jellinger KA . Recent advances in our understanding of neurodegeneration. J. Neural. Transm.116(9), 1111–1162 (2009).
  • Chae HJ , KangJS, ByunJOet al. Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol. Res. 42(4), 373–381 (2000).
  • Jagtap P , SzaboC. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov.4(5), 421–440 (2005).
  • Peng JY , LinCC, ChenYJet al. Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Computat. Biol. 7(10), e1002212 (2011).
  • Wang F , YuL, MonopoliMPet al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9(8), 1159–1168 (2013).
  • Boatright KM , SalvesenGS. Mechanisms of caspase activation. Curr. Opin. Cell Biol.15(6), 725–731 (2003).
  • Riedl SJ , SalvesenGS. The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol.8(5), 405–413 (2007).
  • Youle RJ , StrasserA. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol.9(1), 47–59 (2008).
  • Leber B , LinJ, AndrewsDW. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis12(5), 897–911 (2007).
  • Galonek HL , HardwickJM. Upgrading the BCL-2 network. Nat. Cell Biol.8(12), 1317–1319 (2006).
  • Ren D , TuHC, KimHet al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330(6009), 1390–1393 (2010).
  • Yu J , ZhangL. PUMA, a potent killer with or without p53. Oncogene27(Suppl. 1), S71–S83 (2008).
  • Gallenne T , GautierF, OliverLet al. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J. Cell Biol. 185(2), 279–290 (2009).
  • Jabbour AM , HeraudJE, DauntCPet al. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ. 16(4), 555–563 (2009).
  • Golstein P , KroemerG. Redundant cell death mechanisms as relics and backups. Cell Death Differ.12(Suppl. 2), 1490–1496 (2005).
  • Chipuk JE , GreenDR. Do inducers of apoptosis trigger caspase-independent cell death? Nat. Rev. Mol. Cell Biol.6(3), 268–275 (2005).
  • Kroemer G , MartinSJ. Caspase-independent cell death. Nat. Med.11(7), 725–730 (2005).
  • Karbowski M , NorrisKL, ClelandMM, JeongSY, YouleRJ. Role of Bax and Bak in mitochondrial morphogenesis. Nature443(7112), 658–662 (2006).
  • Zong WX , DitsworthD, BauerDE, WangZQ, ThompsonCB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev.18(11), 1272–1282 (2004).