667
Views
3
CrossRef citations to date
0
Altmetric
Review

Nanoparticles and The Cardiovascular System: A Critical Review

, , , , , , , , & show all
Pages 403-423 | Published online: 11 Mar 2013

References

  • Donaldson K , SeatonA. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol.9, 13 (2012).
  • Brown DM , WilsonMR, MacNeeW, StoneV, DonaldsonK. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol.175, 191–199 (2001).
  • Kreyling WG , MollerW, Semmler-BehnkeM, OberdorsterG. Particle dosimetry: deposition and clearance from the respiratory tract and translocaton to extra-pulmonary sites. In: Particle Toxicology. Donaldson K, Borm P (Eds). CRC Press, FL, USA, 47–74 (2007).
  • Yu CP , HuJP. Diffusional deposition of ultrafine particles in the human lung. In: Aerosols in the Mining and Industrial Work Environments. Marple VA, Liu VYH (Eds). Ann Arbor Sciences, MI, USA, 139–149 (1983).
  • Sun JD , WolffRK, KanapillyGM, McClellanRO. Lung retention and metabolic fate of inhaled benzo(a)pyrene associated with diesel exhaust particles. Toxicol. Appl. Pharmacol.73, 48–59 (1984).
  • Lam HF , ConnerMW, RogersAE, FitzgeraldS, AmdurMO. Functional and morphologic changes in the lungs of guinea pigs exposed to freshly generated ultrafine zinc oxide. Toxicol. Appl. Pharmacol.78, 29–38 (1985).
  • Ferin J , OberdorsterG, PenneyDP. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol.6, 535–542 (1992).
  • Brown DM , StoneV, FindlayP, MacNeeW, DonaldsonK. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup. Environ. Med.57, 685–691 (2000).
  • Tran CL , BuchananD, CullenRT, SearlA, JonesAD, DonaldsonK. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol.12, 1113–1126 (2000).
  • Donaldson K , TranL, JimenezLet al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part. Fibre Toxicol. 2, 10 (2005).
  • Stoeger T , TakenakaS, FrankenbergerBet al. Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds. Environ. Health Perspect. 117, 54–60 (2009).
  • Neumann HG . Health risk of combustion products: toxicological considerations. Chemosphere42, 473–479 (2001).
  • Donaldson K , MillsN, MacNeeW, RobinsonS, NewbyD. Role of inflammation in cardiopulmonary health effects of PM. Toxicol. Appl. Pharmacol.207, 483–488 (2005).
  • Mills NL , DonaldsonK, HadokePWet al. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovasc. Med. 6(1), 36–44 (2008).
  • Langrish JP , MillsNL, NewbyDE. Air pollution: the new cardiovascular risk factor. Intern. Med. J.38, 875–878 (2008).
  • Gupta AS . Nanomedicine approaches in vascular disease: a review. Nanomedicine7, 763–779 (2011).
  • Donaldson K , SeatonA. The Janus faces of nanoparticles. J. Nanosci. Nanotechnol.7, 4607–4611 (2007).
  • Borm PJ , Muller-SchulteD. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond.)1, 235–249 (2006).
  • Donaldson K . Resolving the nanoparticles paradox. Nanomedicine1, 229–234 (2006).
  • WHO. Exposure to air pollution:a major public health concern. In: Preventing Disease Through Healthy Environments. WHO, Geneva, Switzerland (2010).
  • Nemery B , HoetPH, NemmarA. The Meuse Valley fog of 1930: an air pollution disaster. Lancet357, 704–708 (2001).
  • Stone R . Air pollution. Counting the cost of London‘s killer smog. Science298, 2106–2107 (2002).
  • Brunekreef B , HolgateST. Air pollution and health. Lancet360, 1233–1242 (2002).
  • Miller KA , SiscovickDS, SheppardLet al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 356, 447–458 (2007).
  • Dockery DW , PopeCA, XuXPet al. An association between air-pollution and mortality in six U.S. cities. N. Engl. J. Med. 329(24), 1753–1759 (1993).
  • Pope CA , ThunMJ, NamboodiriMMet al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 151 (3 Pt 1), 669–674 (1995).
  • Schwartz J . Air pollution and blood markers of cardiovascular risk. Environ. Health Perspect.109(Suppl. 3), 405–409 (2001).
  • Kunzli N , JerrettM, MackWJet al. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 113, 201–206 (2005).
  • Mustafic H , JabreP, CaussinCet al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 307, 713–721 (2012).
  • Peters A , von Klot S, Heier M et al. Exposure to traffic and the onset of myocardial infarction. N. Engl. J. Med.351, 1721–1730 (2004).
  • Nawrot TS , PerezL, KunzliN, MuntersE, NemeryB. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet377, 732–740 (2011).
  • Roger VL , GoAS, Lloyd-JonesDMet al. Executive summary: heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125, 188–197 (2012).
  • Jencks SF , WilliamsMV, ColemanEA. Rehospitalizations among patients in the medicare fee-for-service program. N. Engl. J. Med.360, 1418–1428 (2009).
  • Dominici F , McDermottA, ZegerSL, SametJM. On the use of generalized additive models in time-series studies of air pollution and health. Am. J. Epidemiol.156, 193–203 (2002).
  • Ueda K , NittaH, OnoM. Effects of fine particulate matter on daily mortality for specific heart diseases in Japan. Circ. J.73, 1248–1254 (2009).
  • Silverman RA , ItoK, FreeseJet al. Association of ambient fine particles with out-of-hospital cardiac arrests in New York City. Am. J. Epidemiol. 172, 917–923 (2010).
  • Jemal A , WardE, HaoY, ThunM. Trends in the leading causes of death in the United States, 1970-2002. JAMA294(10), 1255–1259 (2005).
  • Committee on the Medical Effects of Air Pollutants. Cardiovascular disease and air pollution. 2006. Department of Health, London, UK, 1–215 (2006).
  • Ghio AJ , HuangYC. Exposure to concentrated ambient particles (CAPs): a review. Inhal. Toxicol.16, 53–59 (2004).
  • Brook RD , BrookJR, UrchB, VincentR, RajagopalanS, SilvermanF. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation105, 1534–1536 (2002).
  • Urch B , SilvermanF, CoreyPet al. Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ. Health Perspect. 113, 1052–1055 (2005).
  • Brook RD , UrchB, DvonchJTet al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54, 659–667 (2009).
  • Peretz A , SullivanJH, LeottaDFet al. Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ. Health Perspect. 116, 937–942 (2008).
  • Lundback M , MillsNL, LuckingAet al. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part. Fibre Toxicol. 6, 7 (2009).
  • Chang LT , TangCS, PanYZ, ChanCC. Association of heart rate variability of the elderly with personal exposure to PM 1, PM 1–2.5, and PM 2.5–10. Bull. Environ. Contam. Toxicol.79, 552–556 (2007).
  • Arito H , TakahashiM, IwasakiT, UchiyamaI. Age-related changes in ventilatory and heart rate responses to acute ozone exposure in the conscious rat. Ind. Health35, 78–86 (1997).
  • Park SK , O‘neillMS, VokonasPS, SparrowD, SchwartzJ. Effects of air pollution on heart rate variability: the VA normative aging study. Environ. Health Perspect.113, 304–309 (2005).
  • Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation93(5), 1043–1065 (1996).
  • Mills NL , FinlaysonAE, GonzalezMCet al. Diesel exhaust inhalation does not affect heart rhythm or heart rate variability. Heart 97, 544–550 (2011).
  • Devlin RB , GhioAJ, KehrlH, SandersG, CascioW. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur. Respir. J. Suppl.40, S76–S80 (2003).
  • Routledge HC , ChowdharyS, TownendJN. Heart rate variability – a therapeutic target? J. Clin. Pharm. Ther.27, 85–92 (2002).
  • de Hartog JJ , LankiT, TimonenKLet al. Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease. Environ. Health Perspect. 117, 105–111 (2009).
  • Campen MJ , NolanJP, SchladweilerMC, KodavantiUP, CostaDL, WatkinsonWP. Cardiac and thermoregulatory effects of instilled particulate matter-associated transition metals in healthy and cardiopulmonary-compromised rats. J. Toxicol. Environ. Health A65, 1615–1631 (2002).
  • Mills NL , TornqvistH, GonzalezMCet al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N. Engl. J. Med. 357, 1075–1082 (2007).
  • Mills NL , TornqvistH, RobinsonSDet al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 112, 3930–3936 (2005).
  • Cardillo C , CampiaU, KilcoyneCM, BryantMB, PanzaJA. Improved endothelium-dependent vasodilation after blockade of endothelin receptors in patients with essential hypertension. Circulation105, 452–456 (2002).
  • Langrish JP , UnossonB, BossonJ. Diesel exhaust inhalation induced vascular dysfunction: the role of nitric oxide. Am. J. Resp. Crit. Care Med.57(14), E1429 (2011).
  • Mills NL , MillerMR, LuckingAJet al. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur. Heart J. 32, 2660–2671 (2011).
  • Mills NL , RobinsonSD, FokkensPHet al. Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease. Environ. Health Perspect. 116, 709–715 (2008).
  • Lucking AJ , LundbackM, MillsNLet al. Diesel exhaust inhalation increases thrombus formation in man. Eur. Heart J. 29, 3043–3051 (2008).
  • Miller MR , ShawCA, LangrishJP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol.8, 577–602 (2012).
  • Aung HH , LameMW, GohilKet al. Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol. Genomics 43, 917–929 (2011).
  • Karoly ED , LiZ, DaileyLA, HyseniX, HuangYC. Up-regulation of tissue factor in human pulmonary artery endothelial cells after ultrafine particle exposure. Environ. Health Perspect.115, 535–540 (2007).
  • Lee CC , HuangSH, YangYT, ChengYW, LiCH, KangJJ. Motorcycle exhaust particles up-regulate expression of vascular adhesion molecule-1 and intercellular adhesion molecule-1 in human umbilical vein endothelial cells. Toxicol. In Vitro26, 552–560 (2012).
  • Forchhammer L , LoftS, RoursgaardMet al. Expression of adhesion molecules, monocyte interactions and oxidative stress in human endothelial cells exposed to wood smoke and diesel exhaust particulate matter. Toxicol. Lett. 209, 121–128 (2012).
  • Frikke-Schmidt H , RoursgaardM, LykkesfeldtJ, LoftS, NojgaardJK, MollerP. Effect of vitamin C and iron chelation on diesel exhaust particle and carbon black induced oxidative damage and cell adhesion molecule expression in human endothelial cells. Toxicol. Lett.203, 181–189 (2011).
  • Montiel-Davalos A , Alfaro-MorenoE, Lopez-MarureR. PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal. Toxicol.19(Suppl. 1), 91–98 (2007).
  • Li R , NingZ, CuiJet al. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation. Free Radic. Biol. Med. 46, 775–782 (2009).
  • Chao MW , PoIP, LaumbachRJ, KosloskyJ, CooperK, GordonMK. DEP induction of ROS in capillary-like endothelial tubes leads to VEGF-A expression. Toxicology297, 34–46 (2012).
  • Chao MW , KozloskyJ, PoIPet al. Diesel exhaust particle exposure causes redistribution of endothelial tube VE-cadherin. Toxicology 279, 73–84 (2011).
  • Li R , NingZ, CuiJ, YuF, SioutasC, HsiaiT. Diesel exhaust particles modulate vascular endothelial cell permeability: implication of ZO1 expression. Toxicol. Lett.197, 163–168 (2010).
  • Sumanasekera WK , IvanovaMM, JohnstonBJet al. Rapid effects of diesel exhaust particulate extracts on intracellular signaling in human endothelial cells. Toxicol. Lett. 174, 61–73 (2007).
  • Nemmar A , HoetPH, VanquickenborneBet al. Passage of inhaled particles into the blood circulation in humans. Circulation 105, 411–414 (2002).
  • Mills N , AminN, RobinsonSet al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am. J. Resp. Crit. Care Med. 173(4), 426–431 (2006).
  • Kreyling WG , SemmlerM, ErbeFet al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513–1530 (2002).
  • Kristovich R , KnightDA, LongJF. Macrophage-mediated endothelial inflammatory responses to airborne particulates: impact of particulate physicochemical properties. Chem. Res. Toxicol.17, 1303–1312 (2004).
  • Shaw CA , RobertsonS, MillerMRet al. Diesel particulate-exposed macrophages cause marked endothelial cell activation. Am. J. Respir. Cell Mol. Biol. 44(6), 840–851 (2010).
  • Weldy CS , WilkersonHW, LarsonTV, StewartJA, KavanaghTJ. DIESEL particulate exposed macrophages alter endothelial cell expression of eNOS, iNOS, MCP1, and glutathione synthesis genes. Toxicol. In Vitro25, 2064–2073 (2011).
  • Channell MM , PaffettML, DevlinRB, MaddenMC, CampenMJ. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model. Toxicol. Sci.127, 179–186 (2012).
  • Siegel PD , SaxenaRK, SaxenaQBet al. Effect of diesel exhaust particulate (DEP) on immune responses: contributions of particulate versus organic soluble components. J. Toxicol. Environ. Health A 67, 221–231 (2004).
  • Yin XJ , DongCC, MaJY, RobertsJR, AntoniniJM, MaJK. Suppression of phagocytic and bactericidal functions of rat alveolar macrophages by the organic component of diesel exhaust particles. J. Toxicol. Environ. Health A70, 820–828 (2007).
  • Li R , NingZ, MajumdarRet al. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: implication of chemical components and NF-kappaB signaling. Part. Fibre Toxicol. 7, 6 (2010).
  • Moller P , MikkelsenL, VesterdalLKet al. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit. Rev. Toxicol. 41, 339–368 (2011).
  • Miller MR , BorthwickSJ, ShawCAet al. Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environ. Health Perspect. 117, 611–616 (2009).
  • Quan C , SunQ, LippmannM, ChenLC. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal. Toxicol.22, 738–753 (2010).
  • Mills N , MillerMR. Particles and the vascular endothelium. In: Cardiovascular Effects of Inhaled Ultrafine and Nanosized Particles. Cassee F, Mills N, Newby D (Eds). J Wiley & Sons Inc, NJ, USA, 379–402 (2011).
  • Araujo JA , BarajasB, KleinmanMet al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res. 102, 589–596 (2008).
  • Campen MJ , LundAK, KnucklesTLet al. Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE(-/-) mice. Toxicol. Appl. Pharmacol. 242, 310–317 (2010).
  • Sun Q , YueP, KirkRIet al. Ambient air particulate matter exposure and tissue factor expression in atherosclerosis. Inhal. Toxicol. 20, 127–137 (2008).
  • Ying Z , KampfrathT, ThurstonGet al. Ambient particulates alter vascular function through induction of reactive oxygen and nitrogen species. Toxicol. Sci. 111, 80–88 (2009).
  • Ikeda M , ShitashigeM, YamasakiH, SagaiM, TomitaT. Oxidative modification of low density lipoprotein by diesel exhaust particles. Biol. Pharm. Bull.18, 866–871 (1995).
  • Gong KW , ZhaoW, LiNet al. Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells. Genome Biol. 8, R149 (2007).
  • Sun Q , WangA, JinXet al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294, 3003–3010 (2005).
  • Lund AK , LuceroJ, LucasSet al. Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1-mediated pathways. Arterioscler. Thromb. Vasc. Biol. 29, 511–517 (2009).
  • Ying Z , YueP, XuXet al. Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase. Am. J. Physiol. Heart Circ. Physiol. 296, H1540–H1550 (2009).
  • Cozzi E , HazarikaS, StallingsHW 3rd et al. Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice. Am. J. Physiol. Heart Circ. Physiol.291, H894–H903 (2006).
  • Yan YH , ChouCC, LeeCT, LiuJY, ChengTJ. Enhanced insulin resistance in diet-induced obese rats exposed to fine particles by instillation. Inhal. Toxicol.23, 507–519 (2011).
  • Emmerechts J , Alfaro-MorenoE, VanaudenaerdeBM, NemeryB, HoylaertsMF. Short-term exposure to particulate matter induces arterial but not venous thrombosis in healthy mice. J. Thromb. Haemost.8, 2651–2661 (2010).
  • Emmerechts J , HoylaertsMF. The effect of air pollution on haemostasis. Hamostaseologie32, 5–13 (2012).
  • Nemmar A , NemeryB, HoetPH, VermylenJ, HoylaertsMF. Pulmonary inflammation and thrombogenicity caused by diesel particles in hamsters: role of histamine. Am. J. Respir. Crit. Care Med.168, 1366–1372 (2003).
  • Nemmar A , ZiaS, SubramaniyanD, FahimMA, AliBH. Exacerbation of thrombotic events by diesel exhaust particle in mouse model of hypertension. Toxicology285, 39–45 (2011).
  • Radomski A , JuraszP, Alonso-EscolanoDet al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882–893 (2005).
  • Schulte PA , TroutDB. Nanomaterials and worker health: medical surveillance, exposure registries, and epidemiologic research. J. Occup. Environ. Med.53, S3–S7 (2011).
  • Kang GS , GillespiePA, GunnisonA, MoreiraAL, Tchou-WongKM, ChenLC. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ. Health Perspect.119, 176–181 (2011).
  • Vesterdal LK , FolkmannJK, JacobsenNRet al. Pulmonary exposure to carbon black nanoparticles and vascular effects. Part. Fibre Toxicol. 7, 33 (2010).
  • Mikkelsen L , SheykhzadeM, JensenKAet al. Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO(2). Part. Fibre Toxicol. 8, 32 (2011).
  • Li Z , HuldermanT, SalmenRet al. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ. Health Perspect. 115, 377–382 (2007).
  • LeBlanc AJ , CumpstonJL, ChenBT, FrazerD, CastranovaV, NurkiewiczTR. Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J. Toxicol. Environ. Health A72, 1576–1584 (2009).
  • Khandoga A , StampflA, TakenakaSet al. Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 109, 1320–1325 (2004).
  • McGuinnes C , DuffinR, BrownSet al. Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol. Sci. 119, 359–368 (2011).
  • Corbalan JJ , MedinaC, JacobyA, MalinskiT, RadomskiMW. Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. Int. J. Nanomedicine7, 631–639 (2012).
  • Burke AR , SinghRN, CarrollDLet al. Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32, 5970–5978 (2011).
  • Singh SK , SinghMK, KulkarniPP, SonkarVK, GracioJJ, DashD. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano6, 2731–2740 (2012).
  • Erdely A , HuldermanT, SalmenRet al. Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett. 9, 36–43 (2009).
  • Pai AB , NielsenJC, KauszA, MillerP, OwenJS. Plasma pharmacokinetics of two consecutive doses of ferumoxytol in healthy subjects. Clin. Pharmacol. Ther.88, 237–242 (2010).
  • Richards JM , SempleSI, MacgillivrayTJet al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ. Cardiovasc. Imaging 4, 274–281 (2011).
  • Wang H , ZhaoY, WuYet al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG–PLGA copolymer nanoparticles. Biomaterials 32, 8281–8290 (2011).
  • Yilmaz A , RoschS, KlingelKet al. Magnetic resonance imaging (MRI) of inflamed myocardium using iron oxide nanoparticles in patients with acute myocardial infarction – preliminary results. Int. J. Cardiol. doi: 10.1016/j.ijcard.2011.06.004 (2011) (Epub ahead of print).
  • Hamzah J , KotamrajuVR, SeoJWet al. Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA 108, 7154–7159 (2011).
  • Rosner MH , AuerbachM. Ferumoxytol for the treatment of iron deficiency. Expert Rev. Hematol.4, 399–406 (2011).
  • Zhu MT , WangY, FengWYet al. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J. Nanosci. Nanotechnol. 10, 8584–8590 (2010).
  • Zhu MT , WangB, WangYet al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol. Lett. 203, 162–171 (2011).
  • Lu S , DuffinR, PolandCet al. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ. Health Perspect. 117, 241–247 (2009).
  • Dick CA , BrownDM, DonaldsonK, StoneV. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal. Toxicol.15, 39–52 (2003).
  • Jendelova P , HerynekV, UrdzikovaLet al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76, 232–243 (2004).
  • Jing XH , YangL, DuanXJet al.: In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine75, 432–438 (2008).
  • Seaton A , MacNeeW, DonaldsonK, GoddenD. Particulate air-pollution and acute health-effects. Lancet345, 176–178 (1995).
  • Van ES , LeipsicJ, Paul Man SF, Sin DD. The relationship between lung inflammation and cardiovascular disease. Am. J. Respir. Crit. Care Med.186, 11–16 (2012).
  • Hubbs AF , MercerRR, BenkovicSAet al. Nanotoxicology – a pathologist‘s perspective. Toxicol. Pathol. 39, 301–324 (2011).
  • Geiser M , Rothen-RutishauserB, KappNet al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1555–1560 (2005).
  • Oberdorster G , SharpZ, ElderAP, GeleinR, KreylingW, CoxC. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol.16, 437–445 (2004).
  • Moller W , KreylingWG, SchmidO, Semmler-BehnkeM, SchulzH. Deposition, retention and clearance and translocation of inhaled fine and nano-sized particles in the respiratory tract. In: Particle–Lung Cell Interactions (2nd Edition). Gehr P, Muhlfeld C, Rothen-Rutishauser B, Blank F (Eds). Informa Healthcare, NY, USA, 79–107 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.