159
Views
0
CrossRef citations to date
0
Altmetric
Preliminary Communication

Antibody-Engineered Nanoparticles Selectively Inhibit Mesenchymal Cells Isolated from Patients with Chronic Lung Allograft Dysfunction

, , , , , , , , , , & show all
Pages 9-23 | Published online: 21 Feb 2014

References

  • Giljohann DA , SeferosDS, DanielWL, MassichMD, PatelPC, MirkinCA. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed.49 , 3280–3294 (2010).
  • Lu Y , ChenW. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev.41 , 3594–3623 (2012).
  • Saha K , AgastiSS, KimC, LiX, RotelloVM. Gold nanoparticles in chemical and biological sensing. Chem. Rev.112 , 2739–2779 (2012).
  • Zijlstra P , PauloPMR, OrritM. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotech.7 , 379–782 (2012).
  • Sperling RA , Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem. Soc. Rev.37 , 1896–1908 (2008).
  • Kim C , FavazzaC, WangLV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev.110 , 2756–2782 (2010).
  • Choi MR , Stanton-MaxeyKJ, StanleyJK et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7 , 3759–3765 (2007).
  • Hamad-Schifferli K , SchwartzJJ, SantosAT, ZhangS, JacobsonJM. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature415 , 152–155 (2002).
  • Kim C , AgastiSS, ZhuZ, IsaacsL, RotelloVM. Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat. Chem.2 , 962–966 (2010).
  • Mukherjee P , BhattacharyaR, WangP et al. Antiangiogenic properties of gold nanoparticles. Clin. Cancer. Res. 1 , 3530–3534 (2005).
  • Kuriyama S , MitoroA, TsujinoueH et al. Particle-mediated gene transfer into murine livers using a newly developed gene gun. Gene Ther. 7 , 1132–1136 (2000).
  • Ghosh P , HanG, DeM, KimCK, RotelloVM. Gold nanoparticles in delivery applications. Adv. Drug Delivery Rev.60 , 1307–1315 (2008).
  • Cobley CM , ChenJ, Chul Cho E, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev.40 , 44–56 (2011).
  • Sandhu KK , McIntoshCM, SimardJM, SmithSW, RotelloVM. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chem.13 , 3–6 (2002).
  • Yavuz MS , ChengY, ChenJ et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8 , 935–939 (2009).
  • Rothrock AR , DonkersRL, SchoenfischMH. Synthesis of nitric oxide-releasing gold nanoparticles. J. Am. Chem. Soc.127 , 9362–9363 (2005).
  • Chen YS , HungYC, LiauI, HuangGS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett.4 , 858–864 (2009).
  • Longmire M , ChoykePL, KobayashiH. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine3 , 703–717 (2008).
  • Connor EE , MwamukaJ, GoleA, MurphyCJ, WyattMD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small1 , 325–327 (2005).
  • Verleden GM , VosR, De Vleeschauwer SI et al. Obliterative bronchiolitis following lung transplantation: from old to new concepts? Transplant Int.22 , 771–779 (2009).
  • Finlen Copeland CA , SnyderLD, ZaasDW, TurbyfillWJ, DavisWA, PalmerSM. Survival after bronchiolitis obliterans syndrome among bilateral lung transplant recipients. Am. J. Respir. Crit. Care Med.182 , 784–789 (2010).
  • Todd JL , PalmerSM. Bronchiolitis obliterans syndrome: the final frontier for lung transplantation. Chest140 , 502–508 (2011).
  • Zheng L , WhitfordHM, OrsidaB et al. The dynamics and associations of airway neutrophilia post lung transplantation. Am. J. Transplant. 6 , 599–608 (2006).
  • Vanaudenaerde BM , VerledenSE, VosR et al. Innate and adaptive interleukin-17-producing lymphocytes in chronic inflammatory lung disorders. Am. J. Respir. Crit. Care Med. 183 , 977–986 (2011).
  • Palmer SM , BurchLH, TrindadeAJ et al. Innate immunity influences long-term outcomes after human lung transplant. Am. J. Respir. Crit. Care Med. 171 , 780–785 (2005).
  • Elssner A , VogelmeierC. The role of neutrophils in the pathogenesis of obliterative bronchiolitis after lung transplantation. Transplant. Infect. Dis.3 , 168–176 (2001).
  • Hardison MT , GalinFS, CalderonCE et al. The presence of a matrix-derived neutrophil chemoattractant in bronchiolitis obliterans syndrome after lung transplantation. J. Immunol. 182 , 4423–4431 (2009).
  • Khatwa UA , KleibrinkBE, ShapiroSD, SubramaniamM. MMP-8 promotes polymorphonuclear cell migration through collagen barriers in obliterative bronchiolitis. J. Leukocyte Biol.87 , 69–77 (2010).
  • Andersson-Sjoland A , ThimanL, NihlbergK et al. Fibroblast phenotypes and their activity are changed in the wound healing process after lung transplantation. J. Heart. Lung. Transplant. 30 , 945–954 (2011).
  • Lama VN , SmithL, BadriL et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J. Clin. Invest. 117 , 989–996 (2007).
  • Brocker V , LangerF, FellousTG et al. Fibroblasts of recipient origin contribute to bronchiolitis obliterans in human lung transplants. Am. J. Respir. Crit. Care Med. 173 , 1276–1282 (2006).
  • Sato M , KeshavjeeS. Bronchiolitis obliterans syndrome: alloimmune-dependent and -independent injury with aberrant tissue remodeling. Semin. Thorac. Cardiovasc. Surg.20 , 173–182 (2008).
  • Ramirez AM , NunleyDR, RojasM, RomanJ. Activation of tissue remodeling precedes obliterative bronchiolitis in lung transplant recipients. Biomarker Insights3 , 351–359 (2008).
  • Hayes D Jr. A review of bronchiolitis obliterans syndrome and therapeutic strategies. Cardiothorac. Surg.18 , 86–92 (2011).
  • Bianco R , GarofaloS, RosaR et al. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. Br. J. Cancer 98 , 923–930 (2008).
  • Azzola A , HavrykA, ChhajedP et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. Transplantation 77 , 275–280 (2004).
  • Nashan B . Review of the proliferation inhibitor everolimus. Expert. Opin. Invest. Drugs11 , 1845–1857 (2002).
  • Budde K , BeckerT, ArnsW et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet 377 , 837–847 (2011).
  • Otton J , HaywardCS, KeoghAM, GlanvilleAR, MacdonaldPS. Everolimus-associated pneumonitis in 3 heart transplant recipients. J. Heart Lung. Transplant.28 , 104–106 (2009).
  • Expósito V , de Prada JA, Gómez-Román JJ et al. Everolimus-related pulmonary toxicity in heart transplant recipients. J. Heart Lung Transplant.27 , 797–800 (2008).
  • Ponticelli C , SalvadoriM, ScolariMP et al. Everolimus and minimization of cyclosporine in renal transplantation: 24-month follow-up of the EVEREST study. Transplantation 91 , e72–e73 (2011).
  • Iacono AT , JohnsonBA, GrgurichWF et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients. N. Engl. J. Med. 354 , 141–150 (2006).
  • Hayes D Jr, Zwischenberger JB, Mansour HM. Aerosolized tacrolimus: a case report in a lung transplant recipient. Transplant. Proc.42 , 3876–3879 (2010).
  • Dandel M , LehmkuhlHB, KnosallaC. Hetzer R. Impact of different long-term maintenance immunosuppressive therapy strategies on patients‘ outcome after heart transplantation. Transplant. Immunol.23 , 93–103 (2010).
  • Badri L , MurrayS, LiuLX et al. Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am. J. Respir. Crit. Care Med. 183 , 1062–1070 (2011).
  • Brust M , WalkerM, BethellD, SchiffrinDJ, WhymanRJ. Synthesis of thiol-derivatized gold nanoparticles in a two phase liquid-liquid system. Chem. Commun.801–802 (1994).
  • Colombo M , MazzucchelliS, MontenegroJM et al. Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small 8 , 1492–1497 (2012).
  • Estenne M , MaurerJR, BoehlerA et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J. Heart Lung Transplant. 21 , 297–310 (2002).
  • Meloni F , CascinaA, MiserereS, PerottiC, VituloP, FiettaAM. Peripheral CD4(+)CD25(+) TREG cell counts and the response to extracorporeal photopheresis in lung transplant recipients. Transplant. Proc.39 , 213–217 (2007).
  • No authors listed. Technical recommendations and guidelines for bronchoalveolar lavage (BAL). Report of the European Society of Pneumology Task Group. Eur. Respir. J.2 , 561–585 (1989).
  • Mazzucchelli S , ColomboM, De Palma C et al. Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano4 , 5693–5702 (2010).
  • Cozens AL , YezziMJ, KunzelmannK et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 10 , 38–47 (1994).
  • Costa P , Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci.13 , 123–133 (2001).
  • Bellini A , MattoliS. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab. Invest.87 , 858–870 (2007).
  • Nombela-Arrieta C , RitzJ, SilbersteinLE. The elusive nature and function of mesenchymal stem cells. Nat. Rev. Mol. Cell Biol.12 , 126–131 (2011).
  • Andersson-Sjöland A , NihlbergK, ErikssonL, BjermerL, Westergren-ThorssonG. Fibrocytes and the tissue niche in lung repair. Respir. Res.12 , 76–83 (2011).
  • Zeisberg M , NeilsonEG. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest.119 , 1429–1437 (2009).
  • Walker N , BadriL, WettlauferS et al. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am. J. Pathol. 178 , 2461–2469 (2011).
  • Zander DS , BazMA, MasseyJK. Patterns and significance of CD44 expression in lung allografts. J. Heart Lung Transplant.18 , 646–653 (1999).
  • Dancey J . mTOR signaling and drug development in cancer. Nat. Rev. Clin. Oncol.7 , 209–219 (2010).
  • Riise GC . On interleukin-8, neutrophil activation, and bronchiolitis obliterans syndrome in lung transplantation. Transplantation70 , 265–266 (2000).
  • Meloni F , VituloP, CascinaA et al. Bronchoalveolar lavage cytokine profile in a cohort of lung transplant recipients: a predictive role of interleukin-12 with respect to onset of bronchiolitis obliterans syndrome. J. Heart Lung Transplant. 23 , 1053–1060 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.