542
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoengineering Approaches to The Design of Artificial Antigen-Presenting Cells

&
Pages 1173-1189 | Published online: 25 Jun 2013

References

  • Kawakami Y , EliyahuS, DelgadoCHet al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl Acad. Sci. USA 91(9), 3515–3519 (1994).
  • van der Bruggen P , TraversariC, ChomezPet al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038), 1643–1647 (1991).
  • Novellino L , CastelliC, ParmianiG. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother.54(3), 187–207 (2005).
  • Kantoff PW , HiganoCS, ShoreNDet al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Oelke M , MausMV, DidianoD, JuneCH, MackensenA, SchneckJP. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med.9(5), 619–624 (2003).
  • Maus MV , ThomasAK, LeonardDGet al.: Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4–1BB. Nat. Biotechnol.20(2), 143–148 (2002).
  • Durai M , KruegerC, YeZet al.: In vivo functional efficacy of tumor-specific T cells expanded using HLA-Ig based artificial antigen presenting cells (aAPC). Cancer Immunol. Immunother.58(2), 209–220 (2009).
  • Steenblock ER , FahmyTM. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol. Ther.16(4), 765–772 (2008).
  • Steenblock ER , FadelT, LabowskyM, PoberJS, FahmyTM. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J. Biol. Chem.286(40), 34883–34892 (2011).
  • Engelhard VH , StromingerJL, MescherM, BurakoffS. Induction of secondary cytotoxic T lymphocytes by purified HLA-A and HLA-B antigens reconstituted into phospholipid vesicles. Proc. Natl Acad. Sci. USA75(11), 5688–5691 (1978).
  • Mescher MF . Surface contact requirements for activation of cytotoxic T lymphocytes. J. Immunol.149(7), 2402–2405 (1992).
  • Curtsinger J , DeethsMJ, PeaseP, MescherMF. Artificial cell surface constructs for studying receptor-ligand contributions to lymphocyte activation. J. Immunol. Methods209(1), 47–57 (1997).
  • Turtle CJ , RiddellSR. Artificial antigen-presenting cells for use in adoptive immunotherapy. Cancer J.16(4), 374–381 (2010).
  • Manolova V , FlaceA, BauerM, SchwarzK, SaudanP, BachmannMF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol.38(5), 1404–1413 (2008).
  • Gilboa E . The makings of a tumor rejection antigen. Immunity11(3), 263–270 (1999).
  • Jenkins MK , TaylorPS, NortonSD, UrdahlKB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol.147(8), 2461–2466 (1991).
  • Curtsinger JM , SchmidtCS, MondinoAet al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J. Immunol. 162(6), 3256–3262 (1999).
  • Grakoui A , BromleySK, SumenCet al. The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425), 221–227 (1999).
  • Lee KH , HoldorfAD, DustinML, ChanAC, AllenPM, ShawAS. T cell receptor signaling precedes immunological synapse formation. Science295(5559), 1539–1542 (2002).
  • Rosenberg SA , PackardBS, AebersoldPMet al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319(25), 1676–1680 (1988).
  • Dudley ME , WunderlichJR, RobbinsPFet al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • Kurokawa T , OelkeM, MackensenA. Induction and clonal expansion of tumor-specific cytotoxic T lymphocytes from renal cell carcinoma patients after stimulation with autologous dendritic cells loaded with tumor cells. Int. J. Cancer91(6), 749–756 (2001).
  • Altman JD , MossPA, GoulderPJet al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284), 94–96 (1996).
  • Neudorfer J , SchmidtB, HusterKMet al. Reversible HLA multimers (streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J. Immunol. Methods 320 (1–2), 119–131 (2007).
  • Nguyen DN , GreenJJ, ChanJM, LongerR, AndersonDG. Polymeric materials for gene delivery and dna vaccination. Adv. Mater.21(8), 847–867 (2009).
  • Rosenberg SA . Raising the bar: the curative potential of human cancer immunotherapy. Sci. Transl. Med.4(127), 127ps8 (2012).
  • Morgan RA , DudleyME, WunderlichJRet al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796), 126–129 (2006).
  • Giannoni F , BarnettJ, BiKet al. Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membrane. J. Immunol. 174(6), 3204–3211 (2005).
  • Ugel S , ZosoA, De Santo C et al.In vivo administration of artificial antigen-presenting cells activates low-avidity T cells for treatment of cancer. Cancer Res.69(24), 9376–9384 (2009).
  • Levine BL , BernsteinWB, ConnorsMet al. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J. Immunol. 159(12), 5921–5930 (1997).
  • Maus MV , RileyJL, KwokWW, NepomGT, JuneCH. HLA tetramer-based artificial antigen-presenting cells for stimulation of CD4+ T cells. Clin. Immunol.106(1), 16–22 (2003).
  • Han H , PengJR, ChenPCet al. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro. Biochem. Biophys. Res. Commun. 411(3), 530–535 (2011).
  • Haveman LM , BieringsM, KleinMRet al. Selection of perforin expressing CD4+ adenovirus-specific T-cells with artificial antigen-presenting cells. Clin. Immunol. 146(3), 228–239 (2013).
  • Schutz C , FleckM, MackensenAet al. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells. Blood 111(7), 3546–3552 (2008).
  • Schutz C , OelkeM, SchneckJP, MackensenA, FleckM. Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile‘. Immunotherapy2(4), 539–550 (2010).
  • Webb TJ , BielerJG, SchneckJP, OelkeM. Ex vivo induction and expansion of natural killer T cells by CD1d1-Ig coated artificial antigen-presenting cells. J. Immunol. Methods346(1–2), 38–44 (2009).
  • Sun W , SubrahmanyamPB, EastJE, WebbTJ. Connecting the dots: artificial antigen-presenting cell-mediated modulation of natural killer T cells. J. Interferon Cytokine Res.32(11), 505–516 (2012).
  • Shiratsuchi T , SchneckJ, KawamuraA, TsujiM. Human CD1 dimeric proteins as indispensable tools for research on CD1-binding lipids and CD1-restricted T cells. J. Immunol. Methods345(1–2), 49–59 (2009).
  • Sauer MG , EricsonME, WeigelBJet al. A novel system for simultaneous in vivo tracking and biological assessment of leukemia cells and ex vivo generated leukemia-reactive cytotoxic T cells. Cancer Res. 64(11), 3914–3921 (2004).
  • O‘Herrin SM , SlanskyJE, TangQet al. Antigen-specific blockade of T cells in vivo using dimeric MHC peptide. J. Immunol. 167(5), 2555–2560 (2001).
  • Pareja E , TobesR, MartinJ, NietoA. The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. Tissue Antigens50(5), 421–428 (1997).
  • Deeths MJ , MescherMF. B7-1-dependent co-stimulation results in qualitatively and quantitatively different responses by CD4+ and CD8+ T cells. Eur. J. Immunol.27(3), 598–608 (1997).
  • Deeths MJ , MescherMF. ICAM-1 and B7-1 provide similar but distinct costimulation for CD8+ T cells, while CD4+ T cells are poorly costimulated by ICAM-1. Eur. J. Immunol.29(1), 45–53 (1999).
  • Butte MJ , KeirME, PhamduyTB, SharpeAH, FreemanGJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity27(1), 111–122 (2007).
  • Ndhlovu ZM , OelkeM, SchneckJP, GriffinDE. Dynamic regulation of functionally distinct virus-specific T cells. Proc. Natl Acad. Sci. USA107(8), 3669–3674 (2010).
  • Fuertes Marraco SA , BaumgaertnerP, LegatA, RuferN, SpeiserDE. A stepwise protocol to coat aAPC beads prevents out-competition of anti-CD3 mAb and consequent experimental artefacts. J. Immunol. Methods385(1–2), 90–95 (2012).
  • Shalaby WS , YehH, WooEet al. Absorbable microparticulate cation exchanger for immunotherapeutic delivery. J. Biomed. Mater. Res. B Appl. Biomater. 69(2), 173–182 (2004).
  • Fahmy TM , SamsteinRM, HarnessCC, Mark Saltzman W. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials26(28), 5727–5736 (2005).
  • Pawar AB , KretzschmarI. Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun.31(2), 150–168 (2010).
  • Walther A , MullerAHE. Janus particles. Soft Matter4(4), 663–668 (2008).
  • Doh J , IrvineDJ. Immunological synapse arrays: patterned protein surfaces that modulate immunological synapse structure formation in T cells. Proc. Natl Acad. Sci. USA103(15), 5700–5705 (2006).
  • Snyder CE , YakeAM, FeickJD, VelegolD. Nanoscale functionalization and site-specific assembly of colloids by particle lithography. Langmuir21(11), 4813–4815 (2005).
  • Cayre O , PaunovVN, VelevOD. Fabrication of dipolar colloid particles by microcontact printing. Chem. Commun. (Camb.)18, 2296–2297 (2003).
  • Cayre O , PaunovVN, VelevOD. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques. J. Mater. Chem.13(10), 2445–2450 (2003).
  • Zhao YP , YeDX, WangGC, LuTM. Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett.2(4), 351–354 (2002).
  • Pawar AB , KretzschmarI. Multifunctional patchy particles by glancing angle deposition. Langmuir25(16), 9057–9063 (2009).
  • Zhang G , WangDY, MohwaldH. Patterning microsphere surfaces by templating colloidal crystals. Nano Lett.5(1), 143–146 (2005).
  • Kamalasanan K , JhunjhunwalaS, WuJ, SwansonA, GaoD, LittleSR. Patchy, anisotropic microspheres with soft protein islets. Angew. Chem. Int. Ed. Engl.50(37), 8706–8708 (2011).
  • Serra CA , ChangZQ. Microfluidic-assisted synthesis of polymer particles. Chem. Eng. Technol.31(8), 1099–1115 (2008).
  • Nie ZH , LiW, SeoM, XuSQ, KumachevaE. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J. Am. Chem. Soc.128(29), 9408–9412 (2006).
  • Roh KH , MartinDC, LahannJ. Biphasic Janus particles with nanoscale anisotropy. Nat. Mater.4(10), 759–763 (2005).
  • Mossman KD , CampiG, GrovesJT, DustinML. Altered TCR signaling from geometrically repatterned immunological synapses. Science310(5751), 1191–1193 (2005).
  • Pike LJ . Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid. Res.47(7), 1597–1598 (2006).
  • Lingwood D , SimonsK. Lipid rafts as a membrane-organizing principle. Science327(5961), 46–50 (2010).
  • Hancock JF . Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol.7(6), 456–462 (2006).
  • Nicolau DV , BurrageK, PartonRG, HancockJF. Identifying optimal lipid raft characteristics required to promote nanoscale protein–protein interactions on the plasma membrane. Mol. Cell. Biol.26(1), 313–323 (2006).
  • Vogt AB , SpindeldreherS, KropshoferH. Clustering of MHC–peptide complexes prior to their engagement in the immunological synapse: lipid raft and tetraspan microdomains. Immunol. Rev.189, 136–151 (2002).
  • Anderson HA , HiltboldEM, RochePA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat. Immunol.1(2), 156–162 (2000).
  • Zappasodi R , Di Nicola M, Carlo-Stella C et al. The effect of artificial antigen-presenting cells with preclustered anti-CD28/-CD3/-LFA-1 monoclonal antibodies on the induction of ex vivo expansion of functional human antitumor T cells. Haematologica93(10), 1523–1534 (2008).
  • Tan S , LiX, GuoY, ZhangZ. Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale5(3), 860–872 (2013).
  • Mossman KD , CampiG, GrovesJT, DustinML. Altered TCR signaling from geometrically repatterned immunological synapses. Science310(5751), 1191–1193 (2005).
  • Jin T , PennefatherP, LeePI. Lipobeads: a hydrogel anchored lipid vesicle system. FEBS Lett.397(1), 70–74 (1996).
  • Liu J , JiangX, AshleyC, BrinkerCJ. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc.131(22), 7567–7569 (2009).
  • Mornet S , LambertO, DuguetE, BrissonA. The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett.5(2), 281–285 (2005).
  • Hu CM , ZhangL, AryalS, CheungC, FangRH. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA108(27), 10980–10985 (2011).
  • Ashley CE , CarnesEC, PhillipsGKet al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10(5), 389–397 (2011).
  • Porotto M , YiF, MosconaA, LaVanDA. Synthetic protocells interact with viral nanomachinery and inactivate pathogenic human virus. PLoS One6(3), e16874 (2011).
  • Parodi A , QuattrocchiN, van de Ven AL et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol.8(1), 61–68 (2013).
  • Fletcher DA , MullinsRD. Cell mechanics and the cytoskeleton. Nature463(7280), 485–492 (2010).
  • Merkel TJ , HerlihyKP, NunesJ, OrgelRM, RollandJP, DeSimoneJM. Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir26(16), 13086–13096 (2010).
  • Glotzer SC , SolomonMJ. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater.6(8), 557–562 (2007).
  • Merkel TJ , JonesSW, HerlihyKPet al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA 108(2), 586–591 (2011).
  • Champion JA , KatareYK, MitragotriS. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release121(1–2), 3–9 (2007).
  • Champion JA , MitragotriS. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA103(13), 4930–4934 (2006).
  • Champion JA , MitragotriS. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res.26(1), 244–249 (2009).
  • Sharma G , ValentaDT, AltmanYet al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147(3), 408–412 (2010).
  • Muro S , GarnachoC, ChampionJAet al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16(8), 1450–1458 (2008).
  • Geng Y , DalhaimerP, CaiSet al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2(4), 249–255 (2007).
  • Barua S , YooJW, KolharP, WakankarA, GokarnYR, MitragotriS. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl Acad. Sci. USA110(9), 3270–3275 (2013).
  • Fadel TR , SteenblockER, SternEet al. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 8(7), 2070–2076 (2008).
  • Fadel TR , LookM, StaffierPA, HallerGL, PfefferleLD, FahmyTM. Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation. Langmuir26(8), 5645–5654 (2010).
  • Ho CC , KellerA, OdellJA, OttewillRH. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci.271(5), 469–479 (1993).
  • Champion JA , KatareYK, MitragotriS. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA104(29), 11901–11904 (2007).
  • Yoo JW , MitragotriS. Polymer particles that switch shape in response to a stimulus. Proc. Natl Acad. Sci. USA107(25), 11205–11210 (2010).
  • Sunshine JC , PericaK, SchneckJP, GreenJJ. Non-spherical artificial antigen presenting cells for tumor immunotherapy. Presented at: Society For Biomaterials Annual Meeting 2013. Boston, MA, USA, 10–13 April 2013.
  • Rolland JP , MaynorBW, EulissLE, ExnerAE, DenisonGM, DeSimoneJM. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc.127(28), 10096–10100 (2005).
  • Kelly JY , DeSimoneJM. Shape-specific, monodisperse nano-molding of protein particles. J. Am. Chem. Soc.130(16), 5438–5439 (2008).
  • Wang Y , MerkelTJ, ChenK, FromenCA, BettsDE, DeSimoneJM. Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates. Langmuir27(2), 524–528 (2011).
  • Dendukuri D , PregibonDC, CollinsJ, HattonTA, DoylePS. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater.5(5), 365–369 (2006).
  • Yu Y , AiB, MohwaldH, ZhouZW, ZhangG, YangB. Fabrication of binary and ternary hybrid particles based on colloidal lithography. Chem. Mater.24(23), 4549–4555 (2012).
  • Castellino F , HuangAY, Altan-BonnetG, StollS, ScheineckerC, GermainRN. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature440(7086), 890–895 (2006).
  • Banchereau J , SteinmanRM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Dustin ML , GrovesJT. Receptor signaling clusters in the immune synapse. Annu. Rev. Biophys.41, 543–556 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.