707
Views
2
CrossRef citations to date
0
Altmetric
Review

Application of Fullerenes in Nanomedicine: An Update

, , , , , & show all
Pages 1191-1208 | Published online: 25 Jun 2013

References

  • Rao CNR , CheethamAK. Science and technology of nanomaterials: current status and future prospects. J. Mater. Chem.11(12), 2887–2894 (2001).
  • Liu Z , RobinsonJT, TabakmanSM, YangK, DaiHJ. Carbon materials for drug delivery and cancer therapy. Mater. Today14(7–8), 316–323 (2011).
  • Lu FS , GuLR, MezianiMJet al. Advances in bioapplications of carbon nanotubes. Adv. Mater. 21(2), 139–152 (2009).
  • Sun Z , LiuZ, MengJet al. Carbon nanotubes enhance cytotoxicity mediated by human lymphocytes in vitro. PloS One 6(6), e21073 (2011).
  • Shen H , ZhangLM, LiuM, ZhangZJ. Biomedical applications of graphene. Theranostics2(3), 283–294 (2012).
  • Feng LZ , ZhangSA, LiuZA. Graphene based gene transfection. Nanoscale3(3), 1252–1257 (2011).
  • Basso AS , FrenkelD, QuintanaFJet al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J. Clin. Invest. 118(4), 1532–1543 (2008).
  • Dugan LL , TuretskyDM, DuCet al. Carboxyfullerenes as neuroprotective agents. Proc. Natl Acad. Sci. USA 94(17), 9434–9439 (1997).
  • Bosi S , DaRT, SpallutoG, BalzariniJ, PratoM. Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorg. Med. Chem. Lett.13(24), 4437–4440 (2003).
  • Marchesan S , DaRT, SpallutoG, BalzariniJ, PratoM. Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett.15(15), 3615–3618 (2005).
  • Berger CS , MarksJW, BolskarRD, RosenblumMG, WilsonLJ. Cell internalization studies of gadofullerene-(ZME-018) immunoconjugates into A375m melanoma cells. Transl. Oncol.4(6), 350–354 (2011).
  • Daroczi B , KariG, McAleerMF, WolfJC, RodeckU, DickerAP. In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin. Cancer Res.12(23), 7086–7091 (2006).
  • Lai YL , MuruganP, HwangKC. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci.72(11), 1271–1278 (2003).
  • Gonzalez KA , WilsonLJ, WuW, NancollasGH. Synthesis and in vitro characterization of a tissue-selective fullerene: vectoring C(60)(OH)(16)AMBP to mineralized bone. Bioorg. Med. Chem.10(6), 1991–1997 (2002).
  • Dellinger A , ZhouZ, LenkR, MacfarlandD, KepleyCL. Fullerene nanomaterials inhibit phorbol myristate acetate-induced inflammation. Exp. Dermatol.18(12), 1079–1081 (2009).
  • Tsao N , LuhTY, ChouCKet al.: In vitro action of carboxyfullerene. J. Antimicrob. Chemother.49(4), 641–649 (2002).
  • Quick KL , AliSS, ArchR, XiongC, WozniakD, DuganLL. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol. Aging29(1), 117–128 (2008).
  • Baati T , BourassetF, GharbiNet al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials 33(19), 4936–4946 (2012).
  • Yamago S , TokuyamaH, NakamuraEet al.: In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem. Biol.2(6), 385–389 (1995).
  • Ryan JJ , BatemanHR, StoverAet al. Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179(1), 665–672 (2007).
  • Dellinger A , ZhouZ, NortonSK, LenkR, ConradD, KepleyCL. Uptake and distribution of fullerenes in human mast cells. Nanomedicine6(4), 575–582 (2010).
  • Norton SK , DellingerA, ZhouZet al. A new class of human mast cell and peripheral blood basophil stabilizers that differentially control allergic mediator release. Clin. Transl. Sci. 3(4), 158–169 (2010).
  • Galli SJ , TsaiM, PiliponskyAM. The development of allergic inflammation. Nature454(7203), 445–454 (2008).
  • Kobayashi T , MiuraT, HabaTet al. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol. 164(7), 3855–3861 (2000).
  • Williams CM , GalliSJ. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med.192(3), 455–462 (2000).
  • Gordon JR , GalliSJ. Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature346, 274–276 (1990).
  • Brightling C , BerryM, AmraniY. Targeting TNF-alpha: a novel therapeutic approach for asthma. J. Allergy Clin. Immunol.121(1), 5–10 (2008).
  • Kepley CL , McfeeleyPJ, OliverJM, LipscombMF. Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am. J. Respir. Crit. Care Med.164(6), 1053–1058 (2001).
  • Kepley CL , CraigSS, SchwartzLB. Identification and partial characterization of a unique marker for human basophils. J. Immunol.154(12), 6548–6555 (1995).
  • Schroeder JT . Basophils beyond effector cells of allergic inflammation. Adv. Immunol.101, 123–161 (2009).
  • Jackson DJ , SykesA, MalliaP, JohnstonSL. Asthma exacerbations: origin, effect, and prevention. J. Allergy Clin. Immunol.128(6), 1165–1174 (2011).
  • Norton SK , WijesingheDS, DellingerAet al. Epoxyeicosatrienoic acids are involved in the C(70) fullerene derivative-induced control of allergic asthma. J. Allergy Clin. Immunol. 130(3), 761–769 (2012).
  • Sudhahar V , ShawS, ImigJD. Epoxyeicosatrienoic acid analogs and vascular function. Curr. Med. Chem.17(12), 1181–1190 (2010).
  • Pfister SL , GauthierKM, CampbellWB. Vascular pharmacology of epoxyeicosatrienoic acids. Adv. Pharmacol.60, 27–59 (2010).
  • Morin C , RousseauE. Effects of 5-oxo-ETE and 14,15-EET on reactivity and Ca2+ sensitivity in guinea pig bronchi. Prostaglandins Other Lipid Mediat.82(1–4), 30–41 (2007).
  • Morin C , SiroisM, EchaveV, GomesMM, RousseauE. EET displays anti-inflammatory effects in TNF-alpha stimulated human bronchi: putative role of CPI-17. Am. J. Respir. Cell Mol. Biol.38(2), 192–201 (2008).
  • Node K , HuoY, RuanXet al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285(5431), 1276–1279 (1999).
  • Nigrovic PA , LeeDM. Synovial mast cells: role in acute and chronic arthritis. Immunol. Rev.217, 19–37 (2007).
  • Woolley DE . The mast cell in inflammatory arthritis. N. Engl. J. Med.348(17), 1709–1711 (2003).
  • Irani AA , GolzarN, DebloisG, GruberB, SchwartzLB. Distribution of mast cell subsets in rheumatoid arthritis and osteoarthritis synovia. Arthritis Rheum.30, 66 (1987).
  • Bridges AJ , MaloneDG, JicinskyJet al. Human synovial mast cell involvement in rheumatoid arthritis and osteoarthritis: relationship to disease type, clinical activity, and antirheumatic therapy. Arthritis Rheum. 34, 1116–1124 (1991).
  • Gotis-Graham I , SmithMD, ParkerA, McneilHP. Synovial mast cell responses during clinical improvement in early rheumatoid arthritis. Ann. Rheum. Dis.57(11), 664–671 (1998).
  • Lavery JP , LisseJR. Preliminary study of the tryptase levels in the synovial fluid of patients with inflammatory arthritis. Ann. Allergy72, 425–427 (1994).
  • Lee DM , FriendDS, GurishMF, BenoistC, MathisD, BrennerMB. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science.297(5587), 1689–1692 (2002).
  • Dinser R . Animal models for arthritis. Best Pract. Res. Clin. Rheumatol.22(2), 253–267 (2008).
  • Nigrovic PA , LeeDM. Mast cells in autoantibody responses and arthritis. Novartis Found. Symp.271, 200–209 (2005).
  • Winyard PG , RyanB, EggletonPet al. Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochem. Soc. Trans. 39, 1226–1232 (2011).
  • Zhou Z , LenkRP, DellingerA, WilsonSR, SadlerR, KepleyCL. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconjug. Chem.21(9), 1656–1661 (2010).
  • Ehrich M , van Tassell R, Li Y, Zhou Z, Kepley CL. Fullerene antioxidants decrease organophosphate-induced acetylcholinesterase inhibition in vitro. Toxicol. In Vitro25(1), 301–307 (2011).
  • Zhao W , GomezG, MaceyM, KepleyCL, SchwartzLB. In vitro desensitization of human skin mast cells. J. Clin. Immunol.32(1), 150–160 (2011).
  • Chirico F , FumelliC, MarconiAet al. Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway. Exp. Dermatol. 16(5), 429–436 (2007).
  • Fumelli C , MarconiA, SalvioliSet al. Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis. J. Invest. Dermatol. 115(5), 835–841 (2000).
  • Pitman N , AsquithDL, MurphyG, LiewFY, McinnesIB. Collagen-induced arthritis is not impaired in mast cell-deficient mice. Ann. Rheum. Dis.70(6), 1170–1171 (2011).
  • Brown MA , TanzolaMB, Robbie-RyanM. Mechanisms underlying mast cell influence on EAE disease course. Mol. Immunol.38(16–18), 1373–1378 (2002).
  • Gregory GD , BickfordA, Robbie-RyanM, TanzolaM, BrownMA. MASTering the immune response: mast cells in autoimmunity. Novartis Found. Symp.271, 215–225; discussion 225–231 (2005).
  • Secor VH , SecorWE, GutekunstCA, BrownMA. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med.191(5), 813–822 (2000).
  • Li LB , ReithME. Modeling of the interaction of Na+ and K+ with the binding of dopamine and [3H]WIN 35,428 to the human dopamine transporter. J. Neurochem.72(3), 1095–1109 (1999).
  • Dugan LL , GabrielsenJK, YuSP, LinTS, ChoiDW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis.3(2), 129–135 (1996).
  • Ali SS , HardtJI, QuickKLet al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37(8), 1191–1202 (2004).
  • Borland MK , TrimmerPA, RubinsteinJDet al. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson‘s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol. Neurodegener. 3, 21 (2008).
  • Gilgun-Sherki Y , MelamedE, OffenD. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J. Neurol.251(3), 261–268 (2004).
  • Bakry R , VallantRM, Najam-Ul-HaqMet al. Medicinal applications of fullerenes. Int. J. Nanomedicine 2(4), 639–649 (2007).
  • Mody VV , NounouMI, BikramM. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv. Drug Deliv. Rev.61(10), 795–807 (2009).
  • Nitta N , SekoA, SonodaAet al. Is the use of fullerene in photodynamic therapy effective for atherosclerosis? Cardiovasc. Intervent. Radiol. 31(2), 359–366 (2008).
  • Bolskar RD . Gadofullerene MRI contrast agents. Nanomedicine (Lond.)3(2), 201–213 (2008).
  • Chewning RH , MurphyKJ. Gadolinium-based contrast media and the development of nephrogenic systemic fibrosis in patients with renal insufficiency. J. Vasc. Interv. Radiol.18(3), 331–333 (2007).
  • Runge VM . Gadolinium and nephrogenic systemic fibrosis. AJR Am. J. Roentgenol.192(4), W195–W196 (2009).
  • Ledneva E , KarieS, Launay-VacherV, JanusN, DerayG. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology250(3), 618–628 (2009).
  • Cowper SE . Nephrogenic systemic fibrosis: a review and exploration of the role of gadolinium. Adv. Dermatol.23, 131–154 (2007).
  • Macfarland DK , WalkerKL, LenkRPet al. Hydrochalarones: a novel endohedral metallofullerene platform for enhancing magnetic resonance imaging contrast. J. Med. Chem. 51(13), 3681–3683 (2008).
  • Ouimet T , LancelotE, HyafilFet al. Molecular and cellular targets of the MRI contrast agent p947 for atherosclerosis imaging. Mol. Pharm. 9(4), 850–861 (2012).
  • Uno K , NichollsSJ. Biomarkers of inflammation and oxidative stress in atherosclerosis. Biomark. Med.4(3), 361–373 (2010).
  • Sadeghi MM , GloverDK, LanzaGM, FayadZA, JohnsonLL. Imaging atherosclerosis and vulnerable plaque. J. Nucl. Med.51(Suppl. 1), 51S–65S (2010).
  • Nergiz-Unal R , RademakersT, CosemansJM, HeemskerkJW. CD36 as a multiple-ligand signaling receptor in atherothrombosis. Cardiovasc. Hematol. Agents Med. Chem.9(1), 42–55 (2011).
  • Collot-Teixeira S , MartinJ, Rmott-RoeC, PostonR, McgregorJL. CD36 and macrophages in atherosclerosis. Cardiovasc. Res.75(3), 468–477 (2007).
  • Ge Y , ElghetanyMT. CD36: a multiligand molecule. Lab. Hematol.11(1), 31–37 (2005).
  • Silverstein RL , FebbraioM. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal.2(72), re3 (2009).
  • Podrez EA , PoliakovE, ShenZet al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem. 277(41), 38503–38516 (2002).
  • Kolovou G , AnagnostopoulouK, MikhailidisDP, CokkinosDV. Apolipoprotein E knockout models. Curr. Pharm. Des.14(4), 338–351 (2008).
  • Patra CR , JingY, XuYHet al. A core–shell nanomaterial with endogenous therapeutic and diagnostic functions. Cancer Nanotechnol. 1(1), 13–18 (2010).
  • Yigit MV , ZhuL, IfedibaMAet al. Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano 5(2), 1056–1066 (2011).
  • Park JH , von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed. Engl.47(38), 7284–7288 (2008).
  • Park JH , Von Maltzahn G, Zhang L et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater.20(9), 1630–1635 (2008).
  • Von Maltzahn G , RenY, ParkJHet al.: In vivo tumor cell targeting with “click” nanoparticles. Bioconjug. Chem.19(8), 1570–1578 (2008).
  • Jaffer FA , LibbyP, WeisslederR. Molecular and cellular imaging of atherosclerosis: emerging applications. J. Am. Coll. Cardiol.47(7), 1328–1338 (2006).
  • Jaffer FA , NahrendorfM, SosnovikD, KellyKA, AikawaE, WeisslederR. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol. Imaging5(2), 85–92 (2006).
  • Mccarthy JR , JafferFA, WeisslederR. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small2(8–9), 983–987 (2006).
  • Li C , HallWA, JinN, TodhunterDA, Panoskaltsis-MortariA, ValleraDA. Targeting glioblastoma multiforme with an IL-13/diphtheria toxin fusion protein in vitro and in vivo in nude mice. Protein Eng.15(5), 419–427 (2002).
  • Todhunter DA , HallWA, RustamzadehE, ShuY, DoumbiaSO, ValleraDA. A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng. Des. Sel.17(2), 157–164 (2004).
  • Madhankumar AB , Slagle-WebbB, MintzA, SheehanJM, ConnorJR. Interleukin13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol. Cancer Ther.5(12), 3162–3169 (2006).
  • Oberdorster E . Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect.112(10), 1058–1062 (2004).
  • Barnaby JF . Study raises concerns about carbon particles. New York Times, 29th March (2004).
  • Zhu S , OberdorsterE, HaaschML. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res.62(Suppl.), S5–S9 (2006).
  • Henry TB , PetersenEJ, ComptonRN. Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports. Curr. Opin. Biotechnol.22(4), 533–537 (2011).
  • Chen HH , YuC, UengTHet al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol. Pathol. 26(1), 143–151 (1998).
  • Mori T , TakadaH, ItoS, MatsubayashiK, MiwaN, SawaguchiT. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology225(1), 48–54 (2006).
  • Gharbi N , PressacM, HadchouelM, SzwarcH, WilsonSR, MoussaF. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano. Lett.5(12), 2578–2585 (2005).
  • Ibrahim M , SalehNA, ElshemeyWM, ElsayedAA. Fullerene derivative as anti-HIV protease inhibitor: molecular modeling and QSAR approaches. Mini. Rev. Med. Chem.12(6), 447–451 (2012).
  • Luo Z , XuX, ZhangX, HuL. Development of calixarenes, cyclodextrins and fullerenes as new platforms for anti-HIV drug design: an overview. Mini Rev. Med. Chem.13(8), 1160–1165 (2013).
  • Kornev AB , PeregudovAS, MartynenkoVM, BalzariniJ, HoorelbekeB, TroshinPA. Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene. Chem. Commun. (Camb.)47(29), 8298–8300 (2011).
  • Zhu ZW , SchusterDI, TuckermanME. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Biochemistry42(5), 1326–1333 (2003).
  • Marcorin GL , Da Ros T, Castellano S et al. Design and synthesis of novel [60]fullerene derivatives as potential HIV aspartic protease inhibitors. Org. Lett.2(25), 3955–3958 (2000).
  • Rancan F , RosanS, BoehmFet al. Cytotoxicity and photocytotoxicity of a dendritic C-60 mono-adduct and a malonic acid C-60 tris-adduct on Jurkat cells. J. Photoch. Photobio. B 67(3), 157–162 (2002).
  • Liu Y , WangH. Nanomedicine: nanotechnology tackles tumours. Nat. Nanotechnol.2(1), 20–21 (2007).
  • Saathoff JG , InmanAO, XiaXR, RiviereJE, Monteiro-RiviereNA. In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol. In Vitro25(8), 2105–2112 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.