558
Views
2
CrossRef citations to date
0
Altmetric
Review

Antitumor Immunity by Magnetic Nanoparticle-Mediated Hyperthermia

, , &
Pages 1715-1726 | Published online: 16 Oct 2014

References

  • Dewhirst MW , ProsnitzL, ThrallDet al. Hyperthermic treatment of malignant diseases: current status and a view toward the future. Sem. Oncol.24, 616–625 (1997).
  • Van der Zee J . Heating the patient: a promising approach?Ann. Oncol.13, 1173–1184 (2002).
  • Bauer KD , HenleKJ. Arrhenius analysis of heat survival curves from normal and thermotolerant CHO cells. Radiat. Res.78, 251–263 (1979).
  • Hildebrandt B , WustP, AhlersOet al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol.43, 33–56 (2002).
  • Jordan A , WustP, FählingHet al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int. J. Hyperther.9, 51–68 (1993).
  • Ito A , ShinkaiM, HondaH, KobayashiT. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng.100, 1–11 (2005).
  • Kobayashi T . Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J.6, 1342–1347 (2011).
  • Yanase M , ShinkaiM, HondaHet al. Anti-tumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J. Cancer Res.89, 775–782 (1998).
  • Hergt R , DutzS, RoderM. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J. Phys. Condens. Matter20, 385214 (2008).
  • Dennis CL , IvkovR. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hyperther.29, 715–729 (2013).
  • Moroz P , JonesSK, GrayBN. Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperther.18, 267–284 (2002).
  • Thiesen B , JordanA. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperther.24, 467–474 (2008).
  • Gazeau F , LévyM, WilhelmC. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine (Lond.)3, 831–844 (2008).
  • Wankhede M , BourasA, KakuzovaMet al. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev. Clin. Pharmacol.5, 173–186 (2012).
  • Gilchrist RK , MedalR, ShoreyWDet al. Selective inductive heating of lymph nodes. Ann. Surg.146, 596–606 (1957).
  • Gordon RT , HinesJR, GordonD. Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med. Hypoth.5, 83–102 (1979).
  • Shinkai M , YanaseM, HondaH. Intracellular hyperthermia for cancer using magnetite cationic liposomes – in vitro study. Jpn J. Cancer Res.87, 1179–1183 (1996).
  • Yanase M , ShinkaiM, HondaHet al. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn J. Cancer Res.89, 463–469 (1998).
  • Ito A , KobayashiT. Intracellular hyperthermia using magnetic nanoparticles: a novel method for hyperthermia clinical applications. Thermal Med.24, 113–129 (2008).
  • Cheraghipour E , JavadpourS. Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy. Int. J. Hyperther.29, 511–519 (2013).
  • Sato M , YamashitaT, OhkuraMet al. N-propionyl-cysteaminylphenol-magnetite conjugate (NPrCAP/M) is a nanoparticle for the targeted growth suppression of melanoma cells. J. Invest. Dermatol.129, 2233–2241 (2009).
  • Jimbow K , TamuraY, YonetaAet al. Conjugation of magnetite nanoparticles with melanogenesis substrate, NPrCAP provides melanoma targeted, in situ peptide vaccine immunotherapy through HSP production by chemo-thermotherapy. J. Biomat. Nanobiot.3, 140–154 (2012).
  • Jimbow K , Ishii-OsaiY, ItoSet al. Melanoma-targeted chemo-thermotherapy and in situ peptide immunotherapy through HSP production by using melanogenesis substrate, NPrCAP and magnetite nanoparticles. J. Skin Cancer2013, 742925 (2013).
  • DeNardo SJ , DeNardoGL, NatarajanAet al. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J. Nucl. Med.48, 437–444 (2007).
  • Shinkai M , LeB, HondaHet al. Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Jpn J. Cancer Res.92, 1138–1145 (2001).
  • Kikumori T , KobayashiT, SawakiM, ImaiT. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res. Treat.113, 435–441 (2009).
  • Pala K , SerwotkaA, JelenFet al. Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int. J. Nanomedicine9, 67–76 (2014).
  • Hadjipanayis CG , MachaidzeR, KaluzovaMet al. EGFRvIII antibody conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res.70, 6303–6312 (2010).
  • Yatvin MB , WeinsteinJN, DennisWH, BlumenthalR. Design of liposomes for enhanced local release of drugs by hyperthermia. Science202, 1290–1293 (1978).
  • Ponce AM , VujaskovicZ, YuanFet al. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperther.22, 205–213 (2006).
  • Yang HW , HuaMY, LiuHAet al. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol. Sci. Appl.5, 73–86 (2012).
  • Zitvogel L , KeppO, SenovillaLet al. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin. Cancer Res.16, 3100–3104 (2010).
  • Obeid M , TesniereA, GhiringhelliFet al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med.13, 54–61 (2007).
  • Spisek R , CharalambousA, MazumderAet al. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood109, 4839–4845 (2007).
  • Mukhopadhaya A , MendeckiJ, DongXet al. Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity. Cancer Res.67, 7798–7806 (2007).
  • Didelot C , LanneauD, BrunetMet al. Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr. Med. Chem.14, 2839–2847 (2007).
  • Apetoh L , GhiringhelliF, TesniereAet al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol. Rev.220, 47–59 (2007).
  • Ishii KJ , SuzukiK, CobanCet al. Genomic DNA released by dying cells induces the maturation of APCs. J. Immunol.167, 2602–2607 (2001).
  • Karikó K , NiH, CapodiciJet al. mRNA is an endogenous ligand for toll-like receptor 3. J. Biol. Chem.279, 12542–12550 (2004).
  • Kono H , ChenCJ, OntiverosF, RockKL. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J. Clin. Invest.120, 1939–1949 (2010).
  • Foell D , WittkowskiH, VoglT, RothJ. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol.81, 28–37 (2007).
  • Luheshi NM , GilesJA, Lopez-CastejonG, BroughD. Sphingosine regulates the NLRP3-inflammasome and IL-1β release from macrophages. Eur. J. Immunol.42, 716–725 (2012).
  • Rubartelli A , LotzeMT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol.28, 429–436 (2007).
  • Asin L , GoyaGF, TresAet al. Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Cell Death Dis.4, e596 (2013).
  • Schildkopf P , OttOJ, FreyBet al. Biological rationales and clinical applications of temperature controlled hyperthermia – implications for multimodal cancer treatments. Curr. Med. Chem.17, 3045–3057 (2010).
  • Frey B , WeissEM, RubnerYet al. Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperther.28, 528–542 (2012).
  • Lindquist S . The heat-shock response. Ann. Rev. Biochem.55, 1151–1191 (1986).
  • Mosser DD , CaronAW, BourgetLet al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell. Biol.20, 7146–7159 (2000).
  • Ito A , TanakaK, HondaHet al. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J. Biosci. Bioeng.96, 364–369 (2003).
  • Subjeck JR , SciandraJJ, JohnsonRJ. Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br. J. Radiol.55, 579–584 (1982).
  • Ito A , ShinkaiM, HondaHet al. Heat shock protein 70 expression induces an antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol. Immunother.52, 80–88 (2003).
  • Basu S , BinderRJ, SutoRet al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol.12, 1539–1546 (2000).
  • Srivastava PK , UdonoH, BlachereNF, LiZ. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics39, 93–98 (1994).
  • Udono H , SrivastavaPK. Heat shock protein70-associated peptides elicit specific cancer immunity. J. Exp. Med.178, 1391–1396 (1993).
  • Castelli C , CiupituAMT, RiniFet al. Human heat shock 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res.61, 222–227 (2001).
  • Vanaja DK , GrossmannM, CelisE, YoungCYF. Tumor prevention and antitumor immunity with heat shock protein 70 induced by 15-deoxy-Δ12,14-prostaglandin J2 in transgenic adenocarcima of mouse prostate cells. Cancer Res.60, 4714–4718 (2000).
  • Testori A , RichardsJ, WhitmanEet al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 study group. J. Clin. Oncol.26, 955–962 (2008).
  • Wood C , SrivastavaP, BukowskiRet al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicenter, open-label, randomized Phase III trial. Lancet372, 145–154 (2008).
  • Udono H , SrivastavaPK. Comparison of tumor-specific immunogenicities of stress-induced protein gp96, hsp90, and hsp70. J. Immunol.152, 5398–5403 (1994).
  • Sato A , TamuraY, SatoNet al. Melanoma-targeted chemo–thermo–immuno (CTI)-therapy using N-propionyl-4-S-cysteaminylphenol-magnetite nanoparticles elicits CTL response via heat shock protein-peptide complex release. Cancer Sci.101, 1939–1946 (2010).
  • Ito A , KobayashiT, HondaH. A mechanism of anti-tumor immunity induced by hyperthermia. Jpn J. Hyperther. Oncol.21, 1–19 (2005).
  • Ito A , HondaH, KobayashiT. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of 'heat-controlled necrosis' with heat shock protein expression. Cancer Immunol. Immunother.55, 320–328 (2006).
  • Calderwood SK , GongJ, StevensonMAet al. Cellular and molecular chaperone fusion vaccines: targeting resistant cancer cell populations. Int. J. Hyperther.29, 376–379 (2013).
  • Graner MW , RomanoskiA, KatsanisE. The ‘peptidome’ of tumour-derived chaperone-rich cell lysate anti-cancer vaccines reveals potential tumour antigens that stimulate tumor immunity. Int. J. Hyperther.29, 380–389 (2013).
  • Asea A , KraeftSK, Kurt-JonesLAet al. HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med.6, 435–442 (2000).
  • Srivastava PK . Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol.2, 185–194 (2002).
  • Basu S , BinderRJ, RamalingamT, SrivastavaPK. CD9l is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity14, 303–313 (2001).
  • Binder RJ . CD40-independent engagement of mammalian hsp70 by antigen-presenting cells. J. Immunol.182, 6844–6850 (2009).
  • Ito A , TanakaK, KondoKet al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci.94, 308–313 (2003).
  • Tanaka K , ItoA, KobayashiTet al. Intratumoral injection of immature cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer116, 624–633 (2005).
  • Tanaka K , ItoA, KobayashiTet al. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J. Biosci. Bioeng.100, 112–115 (2005).
  • Steinman RM . The dendritic cell system and its role in immunogenicity. Ann. Rev. Immunol.9, 271–296 (1991).
  • Winzler C , RovereP, RescignoMet al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med.20, 317–328 (1997).
  • Farrar WL , JohnsonHM, FarrarJJ. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J. Immunol.126, 1120–1125 (1981).
  • Azocar J , YunisEJ, EssexM. Sensitivity of human natural killer cells to hyperthermia. Lancet1, 16–17 (1982).
  • Dayanc BE , BeachySH, OstbergJRet al. Dissecting the role of hyperthermia in natural killer cell mediated antitumor responses. Int. J. Hyperther.24, 41–56 (2008).
  • Skitzki JJ , RepaskyEA, EvansSS. Hyperthermia as an immunotherapy strategy for cancer. Curr. Opin. Investig. Drugs10, 550–558 (2009).
  • Gneveckow U , JordanA, ScholzRet al. Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med. Phys.31, 1444–1451 (2004).
  • Johannsen M , GneveckowU, EckeltLet al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperther.21, 637–647 (2005).
  • Johannsen M , GneveckowU, ThiesenBet al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol.52, 1653–1661 (2007).
  • Johannsen M , GneveckowU, TaymoorianKet al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective Phase I trial. Int. J. Hyperther.23, 315–323 (2007).
  • Maier-Hauff K , RotcheR, ScholzRet al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol.81, 53–60 (2007).
  • Van Landeghem FKH , Maier-HauffK, JordanAet al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials30, 52–57 (2009).
  • Maier-Hauff K , UlrichF, NestlerDet al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol.103, 317–324 (2011).
  • Matsumine A , TakegamiK, AsanumaKet al. A novel hyperthermia treatment for bone metastases using magnetic materials. Int. J. Clin. Oncol.16, 101–108 (2011).
  • Takada T , YamashitaT, SatoMet al. Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo–thermo–immunotherapy. J. Biomed. Biotechnol.2009, 457936 (2009).
  • Imai T , KikumoriT, AkiyamaMet al. A phase I study of hyperthermia using magnetite cationic liposome and alternating magnetic field for various refractory malignancies. Presented at:28th Annual Meeting of the Japanese Society for Thermal Medicine . Nagoya, Japan, 9–10 September 2011.
  • Kaddi CD , PhanJH, WangMD. Computational nanomedicine: modeling of nanoparticle-mediated hyperthermia cancer therapy. Nanomedicine (Lond.)8, 1323–1333 (2013).
  • Rodrigues HF , MeloFM, BranquinhoLCet al. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Int. J. Hyperther.29, 752–767 (2013).
  • Williams JP , SouthernP, LissinaAet al. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. Int. J. Nanomedicine8, 2543–2554 (2013).
  • Van Herwijnen MJC , Van Der ZeeR, Van EdenWet al. Heat shock proteins can be targets of regulatory T cells for therapeutic intervention in rheumatoid arthritis. Int. J. Hyperther.29, 448–454 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.