511
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanomaterials: The Next Step in Injectable Bone Cements

, &
Pages 1745-1764 | Published online: 16 Oct 2014

References

  • Larsson S , BauerTW. Use of injectable calcium phosphate cement for fracture fixation: a review. Clin. Orthop. Rel. Res.395, 23–32 (2002).
  • Johnell O , KanisJA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int.17 (12), 1726–1733 (2006).
  • Cummings SR , MeltonLJ. Epidemiology and outcomes of osteoporotic fractures. Lancet359 (9319), 1761–1767 (2002).
  • Rachner TD , KhoslaS, HofbauerLC. Osteoporosis: now and the future. Lancet377 (9773), 1276–1287 (2011).
  • Burge R , Dawson-HughesB, SolomonDH, WongJB, KingA, TostesonA. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res.22 (3), 465–475 (2007).
  • Hou Q , PaulA, ShakesheffKM. Injectable scaffolds for tissue regeneration. J. Mater. Chem.14 (13), 1915–1923 (2004).
  • Gutowska A , JeongB, JasionowskiM. Injectable gels for tissue engineering. Anat. Rec.263 (4), 342–349 (2001).
  • Lewis G . Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J. Biomed. Mater. Res. B76 (2), 456–468 (2006).
  • Heini PF , BerlemannU. Bone substitutes in vertebroplasty. Eur. Spine J.10 (Suppl. 2), S205–S213 (2001).
  • Ambard AJ , MueninghoffL. Calcium phosphate cement: review of mechanical and biological properties. J. Prosthodont.15 (5), 321–328 (2006).
  • Low KL , TanSH, ZeinSHS, RoetherJA, MouriñoV, BoccacciniAR. Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B94B (1), 273–286 (2010).
  • Beuerlein MJS , McKeeMD. Calcium sulfates: what is the evidence?J. Orthop. Trauma24, S46–S51 (2010).
  • Thomas MV , PuleoDA. Calcium sulfate: properties and clinical applications. J. Biomed. Mater. Res. B88B (2), 597–610 (2009).
  • Urban RM , TurnerTM, HallDJ, InoueN, GitelisS. Increased bone formation using calcium sulfate–calcium phosphate composite graft. Clin. Orthop. Rel. Res.459, 110–117 (2007).
  • Lin M , ZhangL, WangJet al. Novel highly bioactive and biodegradable gypsum/calcium silicate composite bone cements: from physicochemical characteristics to in vivo aspects. J. Mater. Chem. B2 (14), 2030–2038 (2014).
  • Félix Lanao RP , LeeuwenburghSCG, WolkeJGC, JansenJA. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles. Biomaterials32 (34), 8839–8847 (2011).
  • Renno ACM , van de WateringFCJ, NejadnikMRet al. Incorporation of bioactive glass in calcium phosphate cement: an evaluation. Acta Biomater.9 (3), 5728–5739 (2013).
  • Zhu XS , ZhangZM, MaoHQet al. A novel sheep vertebral bone defect model for injectable bioactive vertebral augmentation materials. J. Mater. Sci. Mater. Med.22 (1), 159–164 (2011).
  • Horowitz SM , DotySB, LaneJM, BursteinAH. Studies of the mechanism by which the mechanical failure of polymethylmethacrylate leads to bone resorption. J. Bone Joint Surg. Am.75 (6), 802–813 (1993).
  • Blattert TR , DellingG, WeckbachA. Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in the sheep model. Eur. Spine J.12 (2), 216–223 (2003).
  • Ginebra MP , AlbuixechL, Fernández-BarragánEet al. Mechanical performance of acrylic bone cements containing different radiopacifying agents. Biomaterials23 (8), 1873–1882 (2002).
  • Namdari S , RabinovichR, ScolaroJ, BaldwinK, BhandariM, MehtaS. Absorbable and non-absorbable cement augmentation in fixation of intertrochanteric femur fractures: systematic review of the literature. Arch. Orthop. Trauma Surg.133 (4), 487–494 (2013).
  • Jaeblon T . Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J. Am. Acad. Orthop. Sur.18 (5), 297–305 (2010).
  • Lewis G . Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res.38 (2), 155–182 (1997).
  • Wagoner Johnson AJ , HerschlerBA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater7 (1), 16–30 (2011).
  • Larsson S , HanninkG. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury42 (Suppl. 2), S30–S34 (2011).
  • Kruger R , GrollJ. Fiber reinforced calcium phosphate cements – on the way to degradable load bearing bone substitutes?Biomaterials33 (25), 5887–5900 (2012).
  • Hartwell R , LeungV, Chavez-MunozCet al. A novel hydrogel–collagen composite improves functionality of an injectable extracellular matrix. Acta Biomater.7 (8), 3060–3069 (2011).
  • Dhillon A , ScammellBE, ShakesheffK. Physical and biological characterisation of a novel injectable scaffold formulation. J. Bone Joint Surg.94B (Suppl. 18), 9 (2012).
  • Lewis G . Viscoelastic properties of injectable bone cements for orthopaedic applications: state-of-the-art review. J. Biomed. Mater. Res. B98 (1), 171–191 (2011).
  • Shinzato S , KobayashiM, MousaWFet al. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass–ceramic, and hydroxyapatite fillers on mechanical and biological properties. J. Biomed. Mater. Res.51 (2), 258–272 (2000).
  • Kokubo T , YoshiharaS, NishimuraN, YamamuroT, NakamuraT. Bioactive bone cement based on CaO–SiO2–P2O5 glass. J. Am. Ceram. Soc.74 (7), 1739–1741 (1991).
  • Shinzato S , NakamuraT, KokuboT, KitamuraY. A new bioactive bone cement: effect of glass bead filler content on mechanical and biological properties. J. Biomed. Mater. Res.54 (4), 491–500 (2001).
  • Tsukeoka T , SuzukiM, OhtsukiCet al. Mechanical and histological evaluation of a PMMA-based bone cement modified with γ-methacryloxypropyltrimethoxysilane and calcium acetate. Biomaterials27 (21), 3897–3903 (2006).
  • Sugino A , OhtsukiC, MiyazakiT. In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. J. Biomater. Appl.23 (3), 213–228 (2008).
  • Frankel BM , MonroeT, WangC. Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty. Spine J.7 (5), 575–582 (2007).
  • Boger A , BohnerM, HeiniP, VerrierS, SchneiderE. Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J. Biomed. Mater. Res. B86B (2), 474–482 (2008).
  • Donaldson AJ , ThomsonHE, HarperNJ, KennyNW. Bone cement implantation syndrome. Br. J. Anaesth.102 (1), 12–22 (2009).
  • Santin M , MottaA, BorzachielloA, NicolaisL, AmbrosioL. Effect of PMMA cement radical polymerisation on the inflammatory response. J. Mater. Sci. Mater. Med.15 (11), 1175–1180 (2004).
  • Deramond H , WrightNT, BelkoffSM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone25 (2), 17S–21S (1999).
  • Boner V , KuhnP, MendelT, GisepA. Temperature evaluation during PMMA screw augmentation in osteoporotic bone – an in vitro study about the risk of thermal necrosis in human femoral heads. J. Biomed. Mater. Res. B90B (2), 842–848 (2009).
  • McMahon S , HawdonG, BareJ, SimY, BertolloN, WalshWR. Thermal necrosis and PMMA – a cause for concern?J. Bone Joint Surg.94 (Suppl. 23), 64 (2012).
  • Baroud G , SwansonT, SteffenT. Setting sroperties of four acrylic and two calcium-phosphate cements used in vertebroplasty. J. Long Term Eff. Med.16 (1), 51–59 (2006).
  • Bohner M . Reactivity of calcium phosphate cements. J. Mater. Chem.17 (38), 3980–3986 (2007).
  • Tarsuslugil SM , O'HaraRM, DunneNJet al. Development of calcium phosphate cement for the augmentation of traumatically fractured porcine specimens using vertebroplasty. J. Biomech.46 (4), 711–715 (2013).
  • Zhu X , ChenX, ChenCet al. Evaluation of calcium phosphate and calcium sulfate as injectable bone cements in sheep vertebrae. J. Spinal Disord. Tech.25 (6), 333–337 (2012).
  • Mattsson P , LarssonS. Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures: a randomized study of 118 patients. Acta Orthop.77 (2), 251–256 (2006).
  • Ryu KS , ShimJH, HeoHY, ParkCK. Therapeutic efficacy of injectable calcium phosphate cement in osteoporotic vertebral compression fractures: prospective nonrandomized controlled study at 6-month follow-up. World Neurosurg.73 (4), 408–411 (2010).
  • Xu HHK , EichmillerFC, GiuseppettiAA. Reinforcement of a self-setting calcium phosphate cement with different fibers. J. Biomed. Mater. Res.52 (1), 107–114 (2000).
  • Buchanan F , GallagherL, JackV, DunneN. Short-fibre reinforcement of calcium phosphate bone cement. Proc. Inst. Mech. Eng. H221 (2), 203–211 (2007).
  • Ahern BJ , HartenRD, GruskinEA, SchaerTP. Evaluation of a fiber reinforced drillable bone cement for screw augmentation in a sheep model – mechanical testing. Clin. Transl. Sci.3 (3), 112–115 (2010).
  • Chew KK , LowKL, Sharif ZeinSHet al. Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J. Mech. Behav. Biomed. Mater.4 (3), 331–339 (2011).
  • Wang X , YeJ, WangY, ChenL. Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube. J. Am. Ceram. Soc.90 (3), 962–964 (2007).
  • Acarturk O , LehmickeM, AbermanH, TomsD, HollingerJO, FulmerM. Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity. J. Biomed. Mater. Res. B86B (1), 56–62 (2008).
  • Aberg J , PankotaiE, BillstromGHet al. In vivo evaluation of an injectable premixed radiopaque calcium phosphate cement. Int. J. Biomater.2011, 232574 (2011).
  • Torabinejad M , ChivianN. Clinical applications of mineral trioxide aggregate. J. Endodont.25 (3), 197–205 (1999).
  • Gandolfi MG , TaddeiP, SiboniF, ModenaE, GinebraMP, PratiC. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. Int. Endodont. J.44 (10), 938–949 (2011).
  • Wu C , ChangJ. A review of bioactive silicate ceramics. Biomed. Mater.8 (3), 032001 (2013).
  • Roohani-Esfahani SI , DunstanCR, LiJJet al. Unique microstructural design of ceramic scaffolds for bone regeneration under load. Acta Biomater.9 (6), 7014–7024 (2013).
  • Niu LN , JiaoK, WangTDet al. A review of the bioactivity of hydraulic calcium silicate cements. J. Dent.42 (5), 517–533 (2014).
  • Gandolfi MG , ShahSN, FengR, PratiC, AkintoyeSO. Biomimetic calcium-silicate cements support differentiation of human orofacial mesenchymal stem cells. J. Endodont.37 (8), 1102–1108 (2011).
  • Liu W , PengW, ZhuY, ChangJ. Physicochemical properties and in vitro biocompatibility of a hydraulic calcium silicate/tricalcium aluminate cement for endodontic use. J. Biomed. Mater. Res. B100B (5), 1257–1263 (2012).
  • Ding SJ , ShieMY, WangCY. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. J. Mater. Chem.19 (8), 1183–1190 (2009).
  • Shie MY , ChangHC, DingSJ. Composition-dependent protein secretion and integrin level of osteoblastic cell on calcium silicate cements. J. Biomed. Mater. Res. A102 (3), 769–780 (2014).
  • Ding SJ , ShieMY, HoshibaT, KawazoeN, ChenG, ChangHC. Osteogenic differentiation and immune response of human bone-marrow-derived mesenchymal stem cells on injectable calcium-silicate-based bone grafts. Tissue Eng. A16 (7), 2343–2354 (2010).
  • Hoffman AS . Hydrogels for biomedical applications. Adv. Drug Deliver. Rev.64, S18–S23 (2012).
  • Lee KY , MooneyDJ. Alginate: properties and biomedical applications. Prog. Polym. Sci.37 (1), 106–126 (2012).
  • Han Y , ZengQ, LiH, ChangJ. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater.9 (11), 9107–9117 (2013).
  • Bencherif SA , SandsRW, BhattaDet al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. USA109 (48), 19590–19595 (2012).
  • Ni PY , FanM, QianZYet al. Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (epsilon-caprolactone)-poly(ethylene glycol) hydrogel composite. J. Biomed. Mater. Res. A100 (1), 171–179 (2012).
  • Fu S , NiP, WangBet al. Injectable and thermo-sensitive PEG–PCL–PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials33 (19), 4801–4809 (2012).
  • Karageorgiou V , KaplanD. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials26, 5474–5491 (2005).
  • Rahman CV , KuhnG, WhiteLJet al. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater.101B, 648–655 (2013).
  • Bodugoz-Senturk H , MaciasCE, KungJH, MuratogluOK. Poly(vinyl alcohol)–acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials30, 589–596 (2009).
  • Mahfuz H , HasanM, DhanakVet al. Reinforcement of nylon 6 with functionalized silica nanoparticles for enhanced tensile strength and modulus. Nanotechnology19 (44), 445702 (2008).
  • Saha MC , KabirME, JeelaniS. Effect of nanoparticles on mode‐I fracture toughness of polyurethane foams. Polym. Compos.30 (8), 1058–1064 (2009).
  • Wu C , RamaswamyY, KwikD, ZreiqatH. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials28 (21), 3171–3181 (2007).
  • Wu C , RamaswamyY, ZreiqatH. Porous diopside (CaMgSi2O6) scaffold: a promising bioactive material for bone tissue engineering. Acta Biomater.6 (6), 2237–2245 (2010).
  • Hong DW , LaiZT, FuTS, TsaiTT, ChuIM, LaiPL. The influences of polycaprolactone-grafted nanoparticles on the properties of polycaprolactone composites with enhanced osteoconductivity. Compos. Sci. Tech.83, 64–71 (2013).
  • Khaled S , CharpentierPA, RizkallaAS. Synthesis and characterization of poly (methyl methacrylate)-based experimental bone cements reinforced with TiO2–SrO nanotubes. Acta Biomater.6 (8), 3178–3186 (2010).
  • Roohani-Esfahani SI , Nouri-KhorasaniS, LuZF, AppleyardRC, ZreiqatH. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater.7 (3), 1307–1318 (2011).
  • Shalumon K , SowmyaS, SathishD, ChennazhiK, NairSV, JayakumarR. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. J. Biomed. Nanotech.9 (3), 430–440 (2013).
  • Zebarjad SM , SajjadiSA, SdrabadiTE, YaghmaeiA, NaderiB. A study on mechanical properties of PMMA/hydroxyapatite nanocomposite. Engineering3 (8), 795–801 (2011).
  • Chen J , LuoY, HongLet al. Synthesis, characterization and osteoconductivity properties of bone fillers based on alendronate-loaded poly(epsilon-caprolactone)/hydroxyapatite microspheres. J. Mater. Sci. Mater. Med.22 (3), 547–555 (2011).
  • Hu NM , ChenZ, LiuXet al. Mechanical properties and in vitro bioactivity of injectable and self-setting calcium sulfate/nano-HA/collagen bone graft substitute. J. Mech. Behav. Biomed. Mater.12, 119–128 (2012).
  • Chen Y , HuangZ, LiXet al. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J. Nanomater.2012, 401084 (2012).
  • Fathi MH , HanifiA, MortazaviV. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Tech.202 (1–3), 536–542 (2008).
  • Xu JL , KhorKA, SuiJJ, ZhangJH, ChenWN. Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles. Biomaterials30 (29), 5385–5391 (2009).
  • Roohani-Esfahani SI , Nouri-KhorasaniS, LuZ, AppleyardR, ZreiqatH. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials31 (21), 5498–5509 (2010).
  • Roohani-Esfahani SI , Nouri-KhorasaniS, LuZFet al. Modification of porous calcium phosphate surfaces with different geometries of bioactive glass nanoparticles. Mater. Sci. Eng. C32 (4) 830–839 (2012).
  • Shi Z , NeohK, KangE, WangW. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials27 (11), 2440–2449 (2006).
  • Alt V , BechertT, SteinrückePet al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials25 (18), 4383–4391 (2004).
  • Marambio-Jones C , HoekEV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res.12 (5), 1531–1551 (2010).
  • Moojen DJF , VogelyHC, FleerA, VerboutAJ, CasteleinRM, DhertWJA. No efficacy of silver bone cement in the prevention of methicillin-sensitive staphylococcal infections in a rabbit contaminated implant bed model. J. Orthop. Res.27 (8), 1002–1007 (2009).
  • McMahon RE , WangL, SkorackiR, MathurAB. Development of nanomaterials for bone repair and regeneration. J. Biomed. Mater. Res. B101B (2), 387–397 (2013).
  • Gutwein LG , WebsterTJ. Osteoblast and chrondrocyte proliferation in the presence of alumina and titania nanoparticles. J. Nanopart. Res.4, 231–238 (2002).
  • Lipski AM , PinoCJ, HaseltonFR, ChenIW, ShastriVP. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials29 (28), 3836–3846 (2008).
  • Ricker A , Liu-SnyderP, WebsterTJ. The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. Int. J. Nanomed.3 (1), 125–132 (2008).
  • Gillani R , ErcanB, QiaoA, WebsterTJ. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives. Int. J. Nanomed.5, 1–11 (2010).
  • Liu H , SlamovichEB, WebsterTJ. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J. Biomed. Mater. Res. A78A (4), 798–807 (2006).
  • Lu Z , Roohani-EsfahaniSI, WangG, ZreiqatH. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Nanomedicine8 (4), 507–515 (2012).
  • Maiti P , KapusettiG, MisraNet al. Bone cement based nanohybrid as super biomaterial for bone healing. J. Mater. Chem. B2, 3984–3997 (2014).
  • Ajeesh M , FrancisBF, AnnieJ, Harikrishna VarmaPR. Nano iron oxide–hydroxyapatite composite ceramics with enhanced radiopacity. J. Mater. Sci. Mater. Med.21 (5), 1427–1434 (2010).
  • Abboud M , CasaubieilhL, MorvanF, FontanilleM, DuguetE. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements. J. Biomed. Mater. Res.53 (6), 728–736 (2000).
  • Hoekstra JWM , van den BeuckenJJ, LeeuwenburghSC, MeijerGJ, JansenJA. Tantalumpentoxide as a radiopacifier in injectable calcium phosphate cements for bone substitution. Tissue Eng. C17 (9), 907–913 (2011).
  • Gomoll AH , FitzW, ScottRD, ThornhillTS, BellareA. Nanoparticulate fillers improve the mechanical strength of bone cement. Acta Orthop.79 (3), 421–427 (2008).
  • Fu SY , FengXQ, LaukeB, MaiYW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B Eng.39 (6), 933–961 (2008).
  • Goto K , TamuraJ, ShinzatoSet al. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials26 (33), 6496–6505 (2005).
  • Khaled S , SuiR, CharpentierPA, RizkallaAS. Synthesis of TiO2–PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir23 (7), 3988–3995 (2007).
  • Slane J , VivancoJ, MeyerJ, PloegH-LJ, SquireM. Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties. J. Mech. Behav. Biomed. Mater.29, 451–461 (2014).
  • Khaled SMZ , CharpentierPA, RizkallaAS. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. J. Biomater. Appl.25 (6), 515–537 (2011).
  • Vlad MD , Del ValleLJ, BarracoM, TorresR, LopezJ, FernandezE. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty. Spine33 (21), 2290–2298 (2008).
  • Leung LH , NaguibHE. Viscoelastic properties of poly(∊-caprolactone) – hydroxyapatite micro- and nano-composites. Polym. Adv. Tech.24 (2), 144–150 (2012).
  • Xu HH , SmithDT, SimonCG. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials25 (19), 4615–4626 (2004).
  • Burguera EF , XuHHK, WeirMD. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J. Biomed. Mater. Res. B77 (1), 126–134 (2006).
  • Xu HH , WeirMD, BurgueraEF, FraserAM. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials27 (24), 4279–4287 (2006).
  • Burguera EF , XuHHK, SunL. Injectable calcium phosphate cement: effects of powder to liquid ratio and needle size. J. Biomed. Mater. Res. B84 (2), 493–502 (2008).
  • Bohner M , BaroudG. Injectability of calcium phosphate pastes. Biomaterials26 (13), 1553–1563 (2005).
  • Mohammadi M , HesarakiS, Hafezi-ArdakaniM. Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica. Ceram. Int.40 (6), 8377–8387 (2014).
  • Hesaraki S , AlizadehM, BorhanS, Pourbaghi-MasoulehM. Polymerizable nanoparticulate silica-reinforced calcium phosphate bone cement. J. Biomed. Mater. Res. B100 (6), 1627–1635 (2012).
  • Gu SY , RenJ, WangQF. Rheology of poly(propylene)/clay nanocomposites. J. Appl. Polym. Sci.91 (4), 2427–2434 (2004).
  • Kharchenko SB , DouglasJF, ObrzutJ, GrulkeEA, MiglerKB. Flow-induced properties of nanotube-filled polymer materials. Nat. Mater.3 (8), 564–568 (2004).
  • Tinkle S , McNeilSE, MühlebachSet al. Nanomedicines: addressing the scientific and regulatory gap. Ann. NY Acad. Sci.1313 (1), 35–56 (2014).
  • Woodruff MA , HutmacherDW. The return of a forgotten polymer – polycaprolactone in the 21st century. Prog. Polym. Sci.35 (10), 1217–1256 (2010).
  • US FDA . FDA's approach to regulation of nanotechnology products (2012). www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htm.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.