605
Views
1
CrossRef citations to date
0
Altmetric
Review

Gold Nanoparticles for Photothermally Controlled Drug Release

, , , , &
Pages 2023-2039 | Published online: 24 Oct 2014

References

  • Aroca R . Surface-Enhanced Vibrational Spectroscopy.John Wiley and Sons, UK (2006).
  • Le Ru EC , EtchegoinPG. Principles of Surface Enhanced Raman Spectroscopy (and Related Plasmonic Effects).Elsevier, The Netherlands (2009).
  • Turkevich J , StevensonPC, HillierJ. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc.11, 55–75 (1951).
  • Link S , El-SayedMA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem.19 (3), 409–453 (2000).
  • Link S , El-SayedMA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem.54 (1), 331–366 (2003).
  • Jing-Liang L , GuM. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J. Sel. Top. Quantum Electron.16 (4), 989–996 (2010).
  • Choi J , YangJ, JangEet al. Gold nanostructures as photothermal therapy agent for cancer. Anticancer Agents Med. Chem.11 (10), 953–964 (2011).
  • Choi WI , SahuA, KimYH, TaeG. Photothermal cancer therapy and imaging based on gold nanorods. Ann. Biomed. Eng.40 (2), 534–546 (2012).
  • Bayazitoglu Y , KheradmandS, TulliusTK. An overview of nanoparticle assisted laser therapy. Int. J. Heat Mass Transf.67, 469–486 (2013).
  • Boulais E , LachaineR, HatefA, MeunierM. Plasmonics for pulsed-laser cell nanosurgery: fundamentals and applications. J. Photochem. Photobiol. C Photochem. Rev.17, 26–49 (2013).
  • Furlani EP , KarampelasIH, XieQ. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. Lab Chip12 (19), 3707–3719 (2012).
  • Hirsch LR , StaffordRJ, BanksonJAet al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA100 (23), 13549–13554 (2003).
  • Oldenburg SJ , WestcottSL, AverittRD, HalasNJ. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J. Chem. Phys.111 (10), 4729–4735 (1999).
  • Hirsch LR , GobinAM, LoweryARet al. Metal nanoshells. Ann. Biomed. Eng.34 (1), 15–22 (2006).
  • Huang XH , El-SayedIH, QianW, El-SayedMA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.128 (6), 2115–2120 (2006).
  • Nikoobakht B , El-SayedMA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.15 (10), 1957–1962 (2003).
  • Huang XH , JainPK, El-SayedIH, El-SayedMA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23 (3), 217–228 (2008).
  • Jain PK , El-SayedIH, El-SayedMA. Au nanoparticles target cancer. Nano Today2 (1), 18–29 (2007).
  • Skrabalak SE , AuL, LiX, XiaY. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc.2 (9), 2182–2190 (2007).
  • Skrabalak SE , ChenJ, AuL, LuX, LiX, XiaYN. Gold nanocages for biomedical applications. Adv. Mater.19 (20), 3177–3184 (2007).
  • Cho EC , LiuY, XiaY. A simple spectroscopic method for differentiating cellular uptakes of gold nanospheres and nanorods from their mixtures. Angew. Chem. Int. Ed.49 (11), 1976–1980 (2010).
  • Wang H , BrandlDW, NordlanderP, HalasNJ. Plasmonic nanostructures: artificial molecules. Accounts Chem. Res.40 (1), 53–62 (2006).
  • Zhang YS , WangY, WangLet al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. Theranostics3 (8), 532–543 (2013).
  • Near RD , HaydenSC, HunterRE, ThackstonD, El-SayedMA. Rapid and efficient prediction of optical extinction coefficients for gold nanospheres and gold nanorods. J. Phys. Chem. C117 (45), 23950–23955 (2013).
  • Sershen SR , WestcottSL, HalasNJ, WestJL. Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res.51 (3), 293–298 (2000).
  • Oldenburg SJ , AverittRD, WestcottSL, HalasNJ. Nanoengineering of optical resonances. Chem. Phys. Lett.288 (2–4), 243–247 (1998).
  • Tam F , GoodrichGP, JohnsonBR, HalasNJ. Plasmonic enhancement of molecular fluorescence. Nano Lett.7 (2), 496–501 (2007).
  • Schwartzberg AM , OlsonTY, TalleyCE, ZhangJZ. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J. Phys. Chem. B110 (40), 19935–19944 (2006).
  • Xie H-N , LarmourIA, ChenY-Cet al. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer. Nanoscale5 (2), 765–771 (2013).
  • Jana NR , GearheartL, MurphyCJ. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun.7, 617–618 (2001).
  • Kojima C , UmedaY, HaradaA, KonoK. Preparation of near-infrared light absorbing gold nanoparticles using polyethylene glycol-attached dendrimers. Colloids Surf. B81 (2), 648–651 (2010).
  • Zhang G , JasinskiJ, HowellJ, PatelD, StephensD, GobinA. Tunability and stability of gold nanoparticles obtained from chloroauric acid and sodium thiosulfate reaction. Nanoscale Res. Lett.7 (1), 1–9 (2012).
  • Van De Broek B , FrederixF, BonroyKet al. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols. Nanotechnology22 (1), 015601 (2011).
  • Plech A , KotaidisV, GrésillonS, DahmenC, Von PlessenG. Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys. Rev. B70 (19), 195423 (2004).
  • Adura C , GuerreroS, SalasEet al. Stable conjugates of peptides with gold nanorods for biomedical applications with reduced effects on cell viability. ACS Appl. Mater. Interfaces5 (10), 4076–4085 (2013).
  • Cobley CM , AuL, ChenJY, XiaYN. Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin. Drug Deliv.7 (5), 577–587 (2010).
  • Cobley CM , ChenJY, ChoEC, WangLV, XiaYN. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev.40 (1), 44–56 (2011).
  • Chen J , GlausC, LaforestRet al. Gold nanocages as photothermal transducers for cancer treatment. Small6 (7), 811–817 (2010).
  • Huschka R , BarhoumiA, LiuQ, RothJA, JiL, HalasNJ. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano6 (9), 7681–7691 (2012).
  • Yague C , ArrueboM, SantamariaJ. NIR-enhanced drug release from porous Au/SiO2 nanoparticles. Chem. Commun.46 (40), 7513–7515 (2010).
  • Park G , SeoD, ChungIS, SongH. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins. Langmuir29 (44), 13518–13526 (2013).
  • Uehara N . Polymer-functionalized gold nanoparticles as versatile sensing materials. Anal. Sci.26 (12), 1219–1228 (2010).
  • Zhou J , RalstonJ, SedevR, BeattieDA. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci.331 (2), 251–262 (2009).
  • Huang X , NeretinaS, El-SayedMA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater.21 (48), 4880–4910 (2009).
  • Takahashi H , NiidomeY, NiidomeT, KanekoK, KawasakiH, YamadaS. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir22 (1), 2–5 (2005).
  • Hauck TS , GhazaniAA, ChanWC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small4 (1), 153–159 (2008).
  • Kim E , YangJ, ChoiJ, SuhJS, HuhYM, HaamS. Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology20 (36), 365602 (2009).
  • Niidome T , AkiyamaY, YamagataMet al. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia. J. Biomater. Sci. Polym. Ed.20 (9), 1203–1215 (2009).
  • Huang JY , JacksonKS, MurphyCJ. Polyelectrolyte wrapping layers control rates of photothermal molecular release from gold nanorods. Nano Lett.12 (6), 2982–2987 (2012).
  • Choi WI , KimJ-Y, KangC, ByeonCC, KimYH, TaeG. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano5 (3), 1995–2003 (2011).
  • Liu J , DetrembleurC, De Pauw-GilletM-C, MornetS, DuguetE, JeromeC. Gold nanorods coated with a thermo-responsive poly(ethylene glycol)-b-poly(N-vinylcaprolactam) corona as drug delivery systems for remotely near infrared-triggered release. Polym. Chem.5 (3), 799–813 (2014).
  • Adeli M , SarabiRS, Yadollahi FarsiR, MahmoudiM, KalantariM. Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems. J. Mater. Chem.21 (46), 18686–18695 (2011).
  • Campardelli R , Della PortaG, GomezL, IrustaS, ReverchonE, SantamariaJ. Au–PLA nanocomposites for photothermally controlled drug delivery. J. Mater. Chem. B2 (4), 409–417 (2014).
  • Topete A , Alatorre-MedaM, IglesiasPet al. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano8 (3), 2725–2738 (2014).
  • Venkatesan R , PichaimaniA, HariK, BalasubramanianPK, KulandaivelJ, PremkumarK. Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. J. Mater. Chem. B1 (7), 1010–1018 (2013).
  • Kim JH , LeeTR. Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drug-delivery vehicles. Drug Dev. Res.67 (1), 61–69 (2006).
  • You J , ShaoR, WeiX, GuptaS, LiC. Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small6 (9), 1022–1031 (2010).
  • Lee S-M , KimHJ, HaY-Jet al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano7 (1), 50–57 (2012).
  • Greish K . Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol.624, 25–37 (2010).
  • Duncan R . Tumour targeting by enhanced permeability and retention (EPR) effect. Ann. Oncol.9 (Suppl. 2), 39 (1998).
  • Maeda H . Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release164 (2), 138–144 (2012).
  • Matsumura Y , MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46 (12 Pt 1), 6387–6392 (1986).
  • Timko BP , ArrueboM, ShankarappaSAet al. Near-infrared–actuated devices for remotely controlled drug delivery. Proc. Natl Acad. Sci. USA111 (4), 1349–1354 (2014).
  • Arshady R . Microcapsules for food. J Microencapsul.10 (4), 413–435 (1993).
  • Felnerova D , ViretJ-F, GlückR, MoserC. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol.15 (6), 518–529 (2004).
  • Nanobiotechnology II: More Concepts and Applications. Mirkin CA , NiemeyerCM ( Eds). John Wiley and Sons, UK (2007).
  • Thery C , ZitvogelL, AmigorenaS. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol.2 (8), 569–579 (2002).
  • Rengan AK , JagtapM, DeA, BanerjeeR, SrivastavaR. Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale6 (2), 916–923 (2014).
  • An X , ZhanF, ZhuY. Smart photothermal-triggered bilayer phase transition in AuNPs–liposomes to release drug. Langmuir29 (4), 1061–1068 (2013).
  • Matteini P , MartinaMR, GiambastianiGet al. Light-responsive nanocomposite sponges for on demand chemical release with high spatial and dosage control. J. Mater. Chem. B1 (8), 1096–1100 (2013).
  • Agarwal A , MackeyMA, El-SayedMA, BellamkondaRV. Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano5 (6), 4919–4926 (2011).
  • Lei CL , CuiYN, ZhengL, ChowPKH, WangCH. Development of a gene/drug dual delivery system for brain tumor therapy: potent inhibition via RNA interference and synergistic effects. Biomaterials34 (30), 7483–7494 (2013).
  • Anderson LJE , HansenE, Lukianova-HlebEY, HafnerJH, LapotkoDO. Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J. Control. Release144 (2), 151–158 (2010).
  • Bakhtiari ABS , HsiaoD, JinGX, GatesBD, BrandaNR. An efficient method based on the photothermal effect for the release of molecules from metal nanoparticle surfaces. Angew. Chem. Int. Ed. Engl.48 (23), 4166–4169 (2009).
  • Yamashita S , FukushimaH, NiidomeY, MoriT, KatayamaY, NiidomeT. Controlled-release system mediated by a retro Diels–Alder reaction induced by the photothermal effect of gold nanorods. Langmuir27 (23), 14621–14626 (2011).
  • Pandey S , ThakurM, MewadaA, AnjarlekarD, MishraN, SharonM. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B1 (38), 4972–4982 (2013).
  • Hu B , ZhangL-P, ChenX-W, WangJ-H. Gold nanorod-covered kanamycin-loaded hollow SiO2 (HSKAurod) nanocapsules for drug delivery and photothermal therapy on bacteria. Nanoscale5 (1), 246–252 (2013).
  • Yang J , ShenD, ZhouLet al. Spatially confined fabrication of core–shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater.25 (15), 3030–3037 (2013).
  • Yang X , LiuX, LiuZ, PuF, RenJ, QuX. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater.24 (21), 2890–2895 (2012).
  • Zhang ZJ , WangLM, WangJet al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater.24 (11), 1418–1423 (2012).
  • Yang X , LiuZ, LiZ, PuF, RenJ, QuX. Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chem. Eur. J.19 (31), 10388–10394 (2013).
  • Al-Kady AS , GaberM, HusseinMM, EbeidE-ZM. Nanostructure-loaded mesoporous silica for controlled release of coumarin derivatives: a novel testing of the hyperthermia effect. Eur. J. Pharm. Biopharm.77 (1), 66–74 (2011).
  • Luo Y-L , ShiaoY-S, HuangY-F. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano5 (10), 7796–7804 (2011).
  • Thakor AS , JokerstJ, ZavaletaC, MassoudTF, GambhirSS. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett.11 (10), 4029–4036 (2011).
  • Lundqvist M , StiglerJ, EliaG, LynchI, CedervallT, DawsonKA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA105 (38), 14265–14270 (2008).
  • Liu W , RoseJ, PlantevinS, AuffanM, BotteroJ-Y, VidaudC. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?Nanoscale5 (4), 1658–1668 (2013).
  • Pan Y , NeussS, LeifertAet al. Size-dependent cytotoxicity of gold nanoparticles. Small3 (11), 1941–1949 (2007).
  • Lasagna-Reeves C , Gonzalez-RomeroD, BarriaMAet al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun.393 (4), 649–655 (2010).
  • Wang S , LuW, TovmachenkoO, RaiUS, YuH, RayPC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett.463 (1–3), 145–149 (2008).
  • Goodman CM , MccuskerCD, YilmazT, RotelloVM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem.15 (4), 897–900 (2004).
  • Van Vlerken LE , VyasTK, AmijiMM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res.24 (8), 1405–1414 (2007).
  • Cho W-S , ChoM, JeongJet al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol.236 (1), 16–24 (2009).
  • Gref R , MinamitakeY, PeracchiaM, TrubetskoyV, TorchilinV, LangerR. Biodegradable long-circulating polymeric nanospheres. Science263 (5153), 1600–1603 (1994).
  • Kanaras AG , KamounahFS, SchaumburgK, KielyCJ, BrustM. Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chem. Commun. (20), 2294–2295 (2002).
  • Kwon GS . Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst.20 (5), 357–403 (2003).
  • Hillyer JF , AlbrechtRM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci.90 (12), 1927–1936 (2001).
  • Sonavane G , TomodaK, MakinoK. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B66 (2), 274–280 (2008).
  • De Jong WH , HagensWI, KrystekP, BurgerMC, SipsAJaM, GeertsmaRE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials29 (12), 1912–1919 (2008).
  • Semmler-Behnke M , KreylingWG, LipkaJet al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small4 (12), 2108–2111 (2008).
  • Hainfeld JF , SlatkinDN, FocellaTM, SmilowitzHM. Gold nanoparticles: a new x-ray contrast agent. Br. J. Radiol.79 (939), 248–253 (2006).
  • Schäffler M , SousaF, WenkAet al. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials35 (10), 3455–3466 (2014).
  • El-Sayed IH , HuangX, El-SayedMA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett.239 (1), 129–135 (2006).
  • Hosta-Rigau L , OlmedoI, ArbiolJ, CruzLJ, KoganMJ, AlbericioF. Multifunctionalized gold nanoparticles with peptides targeted to gastrin-releasing peptide receptor of a tumor cell line. Bioconjugate Chem.21 (6), 1070–1078 (2010).
  • Prades R , GuerreroS, ArayaEet al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials33 (29), 7194–7205 (2012).
  • Kogan MJ , BastusNG, AmigoRet al. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett.6 (1), 110–115 (2006).
  • Scognamiglio I , Di MartinoMT, CampaniVet al. Transferrin-conjugated SNALPs encapsulating 2′-O-methylated miR-34a for the treatment of multiple myeloma. Biomed. Res. Int.2014, 217365 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.