378
Views
0
CrossRef citations to date
0
Altmetric
Review

Cancer Nanoimmunotherapy Using Advanced Pharmaceutical Nanotechnology

, , , , &
Pages 2587-2605 | Published online: 09 Dec 2014

References

  • Cancer Facts & Figures 2012. www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2012.
  • Lesterhuis WJ , HaanenJB, PuntCJ. Cancer immunotherapy – revisited. Nat. Rev. Drug Discov.10 (8), 591–600 (2011).
  • Dillman RO . Cancer immunotherapy. Cancer Biother. Radiopharm.26 (1), 1–64 (2011).
  • Kasturi SP , SkountzouI, AlbrechtRAet al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature470 (7335), 543–547 (2011).
  • Hemmi H , KaishoT, TakeuchiOet al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol.3 (2), 196–200 (2002).
  • Smith KA . T-cell growth factor. Immunol. Rev.51, 337–357 (1980).
  • Abbas AK , JanewayCJ. Immunology: improving on nature in the twenty-first century. Cell100 (1), 129–138 (2000).
  • Frankenberger B , SchendelDJ. Third generation dendritic cell vaccines for tumor immunotherapy. Eur. J. Cell Biol.91 (1), 53–58 (2012).
  • Rosenberg SA . Cell transfer immunotherapy for metastatic solid cancer – what clinicians need to know. Nat. Rev. Clin. Oncol.8 (10), 577–585 (2011).
  • Dunn GP , BruceAT, IkedaH, OldLJ, SchreiberRD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3 (11), 991–998 (2002).
  • Wheelock EF , WeinholdKJ, LevichJ. The tumor dormant state. Adv. Cancer Res.34, 107–140 (1981).
  • Dunn GP , OldLJ, SchreiberRD. The three Es of cancer immunoediting. Annu. Rev. Immunol.22, 329–360 (2004).
  • Seliger B , MaeurerMJ, FerroneS. Antigen-processing machinery breakdown and tumor growth. Immunol. Today21 (9), 455–464 (2000).
  • Li W , ZhaoMX, KeCet al. Nano polymeric carrier fabrication technologies for advanced antitumor therapy. Biomed. Res. Int.2013, 305089 (2013).
  • Carstens MG . Opportunities and challenges in vaccine delivery. Eur. J. Pharm. Sci.36 (4–5), 605–608 (2009).
  • Jackson C , RuzevickJ, PhallenJ, BelcaidZ, LimM. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol.2011, 732413 (2011).
  • Ellis LM , HicklinDJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin. Cancer Res.15 (24), 7471–7478 (2009).
  • Settleman J . Oncogene addiction. Curr. Biol.22 (2), R43–R44 (2012).
  • Banck MS , GrotheyA. Biomarkers of resistance to epidermal growth factor receptor monoclonal antibodies in patients with metastatic colorectal cancer. Clin. Cancer Res.15 (24), 7492–7501 (2009).
  • Wolchok JD , YangAS, WeberJS. Immune regulatory antibodies: are they the next advance?Cancer J.16 (4), 311–317 (2010).
  • Brahmer JR , DrakeCG, WollnerIet al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28 (19), 3167–3175 (2010).
  • Sapra P , ShorB. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol. Ther.138 (3), 452–469 (2013).
  • Mocellin S , RossiCR, NittiD. Cancer vaccine development: on the way to break immune tolerance to malignant cells. Exp. Cell Res.299 (2), 267–278 (2004).
  • Li W , LiH, LiJet al. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors. Int. J. Nanomedicine7, 4661–4677 (2012).
  • Singh M , ChakrapaniA, O'HaganD. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev. Vaccines6 (5), 797–808 (2007).
  • Chen W , YanW, HuangL. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol. Immunother.57 (4), 517–530 (2008).
  • Mesa C , FernandezLE. Challenges facing adjuvants for cancer immunotherapy. Immunol. Cell Biol.82 (6), 644–650 (2004).
  • Roldao A , MelladoMC, CastilhoLR, CarrondoMJ, AlvesPM. Virus-like particles in vaccine development. Expert Rev. Vaccines9 (10), 1149–1176 (2010).
  • Rosenberg SA , YangJC, RestifoNP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10 (9), 909–915 (2004).
  • Finn OJ . Cancer vaccines: between the idea and the reality. Nat. Rev. Immunol.3 (8), 630–641 (2003).
  • Oyewumi MO , KumarA, CuiZ. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines9 (9), 1095–1107 (2010).
  • Mellado MC , MenaJA, LopesAet al. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles. Biotechnol. Bioeng.104 (4), 674–686 (2009).
  • Zou W . Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer5 (4), 263–274 (2005).
  • Zou W . Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol.6 (4), 295–307 (2006).
  • Williams LM , RudenskyAY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol.8 (3), 277–284 (2007).
  • Ding B , WuX, FanWet al. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int. J. Nanomedicine6, 1991–2005 (2011).
  • Jackson C , RuzevickJ, PhallenJ, BelcaidZ, LimM. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin. Dev. Immunol.732413 (2011).
  • Li W , FengSS, GuoY. Polymeric nanoparticulates for cancer immunotherapy. Nanomedicine (Lond.)8 (5), 679–682 (2013).
  • Li W , ZhangL, ZhangGet al. The finely regulating well-defined functional polymeric nanocarriers for anti-tumor immunotherapy. Mini Rev. Med. Chem.13 (5), 643–652 (2013).
  • Li W , ZhaoH, QianWet al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials33 (21), 5349–5362 (2012).
  • Zaric M , LyubomskaO, TouzeletOet al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano7 (3), 2042–2055 (2013).
  • Blank F , GerberP, Rothen-RutishauserBet al. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology5 (4), 606–621 (2011).
  • Kasturi SP , SkountzouI, AlbrechtRAet al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature470 (7335), 543–547 (2011).
  • Uto T , WangX, SatoKet al. Targeting of antigen to dendritic cells with poly(gamma-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J. Immunol.178 (5), 2979–2986 (2007).
  • Wang X , UtoT, AkagiT, AkashiM, BabaM. Poly(gamma-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an AIDS vaccine. J. Med. Virol.80 (1), 11–19 (2008).
  • Yoshikawa T , OkadaN, OdaAet al. Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells. Vaccine26 (10), 1303–1313 (2008).
  • Akagi T , WangX, UtoT, BabaM, AkashiM. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials28 (23), 3427–3436 (2007).
  • Hamdy S , ElamanchiliP, AlshamsanA, MolaviO, SatouT, SamuelJ. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D, L-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. A81 (3), 652–662 (2007).
  • Greenland JR , LetvinNL. Chemical adjuvants for plasmid DNA vaccines. Vaccine25 (19), 3731–3741 (2007).
  • Hobo W , NovobrantsevaTI, FredrixHet al. Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol. Immunother.62 (2), 285–297 (2013).
  • Park IY , KimIY, YooMK, ChoiYJ, ChoMH, ChoCS. Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int. J. Pharm.359 (1–2), 280–287 (2008).
  • Mishra D , MishraPK, DabadghaoS, DubeyV, NaharM, JainNK. Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response. Nanomedicine6 (1), 110–118 (2010).
  • Minigo G , ScholzenA, TangCKet al. Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine25 (7), 1316–1327 (2007).
  • Cubillos-Ruiz JR , EngleX, ScarlettUKet al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J. Clin. Invest.119 (8), 2231–2244 (2009).
  • Flanary S , HoffmanAS, StaytonPS. Antigen delivery with poly(propylacrylic acid) conjugation enhances MHC-1 presentation and T-cell activation. Bioconjug. Chem.20 (2), 241–248 (2009).
  • Tang R , PalumboRN, NagarajanL, KrogstadE, WangC. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length. J. Control. Release142 (2), 229–237 (2010).
  • Eby JK , DaneKY, O'NeilCP, HirosueS, SwartzMA, HubbellJA. Polymer micelles with pyridyl disulfide-coupled antigen travel through lymphatics and show enhanced cellular responses following immunization. Acta Biomater.8 (9), 3210–3217 (2012).
  • Boudier A , Aubert-PouesselA, MebarekNet al. Development of tripartite polyion micelles for efficient peptide delivery into dendritic cells without altering their plasticity. J. Control. Release154 (2), 156–163 (2011).
  • Cheng C , ConvertineAJ, StaytonPS, BryersJD. Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials33 (28), 6868–6876 (2012).
  • Demento SL , EisenbarthSC, FoellmerHGet al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine27 (23), 3013–3021 (2009).
  • Hamdy S , MolaviO, MaZet al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine26 (39), 5046–5057 (2008).
  • Irache JM , SalmanHH, GamazoC, EspuelasS. Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Deliv.5 (6), 703–724 (2008).
  • Moon JJ , SuhH, BershteynAet al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater.10 (3), 243–251 (2011).
  • Sneh-Edri H , LikhtenshteinD, StepenskyD. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm.8 (4), 1266–1275 (2011).
  • Kwon YJ , StandleySM, GohSL, FrechetJM. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release105 (3), 199–212 (2005).
  • Dutta T , JainNK. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim. Biophys. Acta1770 (4), 681–686 (2007).
  • Nochi T , YukiY, TakahashiHet al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater.9 (7), 572–578 (2010).
  • Pitaksuteepong T , DaviesNM, BairdM, RadesT. Uptake of antigen encapsulated in polyethylcyanoacrylate nanoparticles by D1-dendritic cells. Pharmazie59 (2), 134–142 (2004).
  • Elamanchili P , LutsiakCM, HamdyS, DiwanM, SamuelJ. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J. Immunother.30 (4), 378–395 (2007).
  • Slutter B , PlapiedL, FievezVet al. Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J. Control. Release138 (2), 113–121 (2009).
  • Kanchan V , PandaAK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials28 (35), 5344–5357 (2007).
  • Mohanan D , SlutterB, Henriksen-LaceyMet al. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J. Control. Release147 (3), 342–349 (2010).
  • Combadiere B , MaheB. Particle-based vaccines for transcutaneous vaccination. Comp. Immunol. Microbiol. Infect. Dis.31 (2–3), 293–315 (2008).
  • Fuchs S , KlierJ, MayA, WinterG, CoesterC, GehlenH. Towards an inhalative in vivo application of immunomodulating gelatin nanoparticles in horse-related preformulation studies. J. Microencapsul.29 (7), 615–625 (2012).
  • Sherwood JK , DauseRB, SaltzmanWM. Controlled antibody delivery systems. Biotechnology (NY)10 (11), 1446–1449 (1992).
  • Marroquin BO , CorderoMI, SetolaVet al. Chronic delivery of antibody fragments using immunoisolated cell implants as a passive vaccination tool. PLoS ONE6 (4), e18268 (2011).
  • Lim JS , LeeK, ChoiJNet al. Intracellular protein delivery by hollow mesoporous silica capsules with a large surface hole. Nanotechnology23 (8), 085101 (2012).
  • Lei C , LiuP, ChenBet al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J. Am. Chem. Soc.132 (20), 6906–6907 (2010).
  • Hubbell JA , ThomasSN, SwartzMA. Materials engineering for immunomodulation. Nature462 (7272), 449–460 (2009).
  • Lee Y , IshiiT, KimHJet al. Efficient delivery of bioactive antibodies into the cytoplasm of living cells by charge-conversional polyion complex micelles. Angew. Chem. Int. Ed. Engl.49 (14), 2552–2555 (2010).
  • Canton I , MassignaniM, PatikarnmonthonNet al. Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. FASEB J.27 (1), 98–108 (2013).
  • Tyagi P , BarrosM, StansburyJW, KompellaUB. Light activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol. Pharm.10 (8), 2858–2867 (2013).
  • Duncan R . Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6 (Pt 1), 688–701 (2006).
  • Berguig GY , ConvertineAJ, ShiJet al. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody–polymer conjugate. Mol. Pharm.9 (12), 3506–3514 (2012).
  • Lackey CA , PressOW, HoffmanAS, StaytonPS. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug. Chem.13 (5), 996–1001 (2002).
  • Li W , GuoQ, ZhaoHet al. Novel dual-control poly(N-isopropylacrylamide-co-chlorophyllin) nanogels for improving drug release. Nanomedicine (Lond.)7 (3), 383–392 (2012).
  • Hubbell JA , ThomasSN, SwartzMA. Materials engineering for immunomodulation. Nature462 (7272), 449–460 (2009).
  • Global medical discovery . The finely regulating well-defined functional polymeric nanocarriers for anti-tumor immunotherapy. http://globalmedicaldiscovery.com/key-scientific-articles/the-finely-regulating-well-defined-functional-polymeric-nanocarriers-for-anti-tumor-immunotherapy.
  • Brown JM , GiacciaAJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res.58 (7), 1408–1416 (1998).
  • Tredan O , GalmariniCM, PatelK, TannockIF. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst.99 (19), 1441–1454 (2007).
  • Yahara T , KogaT, YoshidaS, NakagawaS, DeguchiH, ShirouzuK. Relationship between microvessel density and thermographic hot areas in breast cancer. Surg. Today33 (4), 243–248 (2003).
  • Li W , FengS, GuoY. Tailoring polymeric micelles to optimize delivery to solid tumors. Nanomedicine (Lond.)7 (8), 1235–1252 (2012).
  • Lu Y , SegaE, LeamonCP, LowPS. Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv. Drug Deliv. Rev.56 (8), 1161–1176 (2004).
  • Peer D , ParkEJ, MorishitaY, CarmanCV, ShimaokaM. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science319 (5863), 627–630 (2008).
  • Tai W , MahatoR, ChengK. The role of HER2 in cancer therapy and targeted drug delivery. J. Control. Release146 (3), 264–275 (2010).
  • Wu K , LiuJ, JohnsonRN, YangJ, KopecekJ. Drug-free macromolecular therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. Angew. Chem. Int. Ed. Engl.49 (8), 1451–1455 (2010).
  • Li W , FengSS, GuoY. Block copolymer micelles for nanomedicine. Nanomedicine (Lond.)7 (2), 169–172 (2012).
  • Li W , NakayamaM, AkimotoJ, OkanoT. Effect of block compositions of amphiphilic block copolymers on the physicochemical properties of polymeric micelles. Polymer52 (17), 3783–3790 (2011).
  • Li W , LiJ, GaoJet al. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials32 (15), 3832–3844 (2011).
  • Li W , HongL, NgaiT, HuangH, HeT, WuC. A comparative study of chain dynamics of di-and tri-block copolymers in semidilute solution in a non-selective solvent. Chinese J. Polym. Sci.22 (6), 589–598 (2004).
  • Odian G . Principles of Polymerization (Chemistry) (4th Edition).Wiley-Blackwell Hobroke, NJ, USA (2004).
  • Sharp JM , DickinsonRB. Direct evaluation of DLVO theory for predicting long-range forces between a yeast cell and a surface. Langmuir21 (18), 8198–8203 (2005).
  • Champion JA , MitragotriS. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA103 (13), 4930–4934 (2006).
  • Champion JA , WalkerA, MitragotriS. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res.25 (8), 1815–1821 (2008).
  • Torchilin VP . Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J.9 (2), E128–E147 (2007).
  • Elamanchili P , DiwanM, CaoM, SamuelJ. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine22 (19), 2406–2412 (2004).
  • Peer D , KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2 (12), 751–760 (2007).
  • Basarkar A , SinghJ. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm. Res.26 (1), 72–81 (2009).
  • Boudier A , Aubert-PouesselA, Louis-PlencePet al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles. Biomaterials30 (2), 233–241 (2009).
  • Roy P , NoadR. Virus-like particles as a vaccine delivery system: myths and facts. Hum. Vaccin.491 (1), 5–12 (2008).
  • Liu Z , WintersM, HolodniyM, DaiH. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. Engl.46 (12), 2023–2027 (2007).
  • Bae Y , NishiyamaN, FukushimaS, KoyamaH, YasuhiroM, KataokaK. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem.16 (1), 122–130 (2005).
  • Nishiyama N , BaeY, MiyataK, FukushimaS, KataokaK. Smart polymeric micelles for gene and drug delivery. Drug Discov. Today Technol.2 (1), 21–26 (2005).
  • Lee ES , GaoZ, BaeYH. Recent progress in tumor pH targeting nanotechnology. J. Control. Release132 (3), 164–170 (2008).
  • Lee ES , NaK, BaeYH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett.5 (2), 325–329 (2005).
  • Takae S , MiyataK, ObaMet al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc.130 (18), 6001–6009 (2008).
  • Zhu J , TangA, LawLPet al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug. Chem.16 (1), 139–146 (2005).
  • Zhang Z , TongchusakS, MizukamiYet al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials32 (14), 3666–3678 (2011).
  • Krishnamachari Y , SalemAK. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev.61 (3), 205–217 (2009).
  • Davis ME , ChenZG, ShinDM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7 (9), 771–782 (2008).
  • Nochi T , YukiY, TakahashiHet al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater.9 (7), 572–578 (2010).
  • Poland CA , DuffinR, KinlochIet al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol.3 (7), 423–428 (2008).
  • Dobrovolskaia MA , McNeilSE. Immunological properties of engineered nanomaterials. Nat. Nanotechnol.2 (8), 469–478 (2007).
  • Moghimi SM . Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Biochim. Biophys. Acta1590 (1–3), 131–139 (2002).
  • Seliger B , WollscheidU, MomburgF, BlankensteinT, HuberC. Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res.61 (3), 1095–1099 (2001).
  • Tarhini AA , CherianJ, MoschosSJet al. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol.30 (3), 322–328 (2012).
  • Webster WS , ThompsonRH, HarrisKJet al. Targeting molecular and cellular inhibitory mechanisms for improvement of antitumor memory responses reactivated by tumor cell vaccine. J. Immunol.179 (5), 2860–2869 (2007).
  • Vyas SP , GuptaPN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev. Vaccines6 (3), 401–418 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.