360
Views
1
CrossRef citations to date
0
Altmetric
Review

Cancer Theranostics with Gold Nanoshells

, &
Pages 2041-2057 | Published online: 24 Oct 2014

References

  • Siegel R , MaJ, ZouZ, JemalA. Cancer statistics, 2014. CA Cancer J. Clin.64 (1), 9–29 (2014).
  • Bardhan R , LalS, JoshiA, HalasNJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc. Chem. Res.44 (10), 936–946 (2011).
  • Melancon MP , ZhouM, LiC. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res.44 (10), 947–956 (2011).
  • Jain PK , HuangX, El-SayedIH, El-SayedMA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res.41 (12), 1578–1586 (2008).
  • Vogel A , VenugopalanV. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev.103 (2), 577–644 (2003).
  • Skrabalak SE , ChenJ, SunYet al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res.41 (12),  1587–1595 (2008).
  • Sun Y , XiaY. Shape-controlled synthesis of gold and silver nanoparticles. Science298 (5601), 2176–2179 (2002).
  • Lu W , XiongCY, ZhangGDet al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin. Cancer Res.15 (3),  876–886 (2009).
  • Lu W , MelanconMP, XiongCet al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res.71 (19),  6116–6121 (2011).
  • Zhang Q , GeJ, GoeblJ, HuY, SunY, YinY. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties. Adv. Mater.22 (17), 1905–1909 (2010).
  • Slocik JM , TamF, HalasNJ, NaikRR. Peptide-assembled optically responsive nanoparticle complexes. Nano Lett.7 (4), 1054–1058 (2007).
  • Ke H , WangJ, TongSet al. Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics4 (1),  12–23 (2013).
  • Topete A , Alatorre-MedaM, IglesiasPet al. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano8 (3),  2725–2738 (2014).
  • Wu C , YuC, ChuM. A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int. J. Nanomedicine6, 807–813 (2011).
  • Liu H , ChenD, LiLet al. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. Engl.50 (4),  891–895 (2011).
  • Neeves AE , BirnboimMH. Composite structures for the enhancement of nonlinear-optical susceptibility. J. Opt. Soc. Am. B6 (4), 787–796 (1989).
  • Oldenburg SJ , AverittRD, WestcottSL, HalasNJ. Nanoengineering of optical resonances. Chem. Phys. Lett.288 (2–4), 243–247 (1998).
  • Liu C , MiCC, LiBQ. Energy absorption of gold nanoshells in hyperthermia therapy. IEEE Trans. Nanobioscience7 (3), 206–214 (2008).
  • Hirsch LR , JacksonJB, LeeA, HalasNJ, WestJL. A whole blood immunoassay using gold nanoshells. Anal. Chem.75 (10), 2377–2381 (2003).
  • Huschka R , ZuloagaJ, KnightMW, BrownLV, NordlanderP, HalasNJ. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc.133 (31), 12247–12255 (2011).
  • Melancon MP , LuW, ZhongMet al. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials32 (30),  7600–7608 (2011).
  • Richardson HH , CarlsonMT, TandlerPJ, HernandezP, GovorovAO. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett.9 (3), 1139–1146 (2009).
  • Huang X , JainPK, El-SayedIH, El-SayedMA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23 (3), 217–228 (2008).
  • Jain PK , LeeKS, El-SayedIH, El-SayedMA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B110 (14), 7238–7248 (2006).
  • Sikdar D , RukhlenkoID, ChengW, PremaratneM. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomed. Opt. Express4 (1), 15–31 (2013).
  • Kessentini S , BarchiesiD. Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy. Biomed. Opt. Express3 (3), 590–604 (2012).
  • Lukianova-Hleb E , HuY, LatteriniLet al. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano4 (4),  2109–2123 (2010).
  • Lukianova-Hleb EY , RenX, ConstantinouPEet al. Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems. PLoS ONE7 (4),  e34537 (2012).
  • Rosler A , VandermeulenGWM, KlokHA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliver. Rev.53 (1), 95–108 (2001).
  • Dellian M , YuanF, TrubetskoyVS, TorchilinVP, JainRK. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer82 (9), 1513–1518 (2000).
  • Hobbs SK , MonskyWL, YuanFet al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA95 (8),  4607–4612 (1998).
  • Yuan F , DellianM, FukumuraDet al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res.55 (17),  3752–3756 (1995).
  • Torchilin VP . Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol. Life Sci.61 (19–20), 2549–2559 (2004).
  • Gobin AM , MoonJJ, WestJL. EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells. Int. J. Nanomedicine3 (3), 351–358 (2008).
  • Lowery AR , GobinAM, DayES, HalasNJ, WestJL. Immunonanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomedicine1 (2), 149–154 (2006).
  • Shockley TR , LinK, NagyJA, TompkinsRG, YarmushML, DvorakHF. Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res.52 (2), 367–376 (1992).
  • Melancon MP , LuW, YangZet al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther.7 (6),  1730–1739 (2008).
  • Perrault SD , WalkeyC, JenningsT, FischerHC, ChanWCW. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett.9 (5), 1909–1915 (2009).
  • Lee H , FongeH, HoangB, ReillyRM, AllenC. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol. Pharmaceutics7 (4), 1195–1208 (2010).
  • England CG , PriestT, ZhangGet al. Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int. J. Nanomedicine8, 3603–3617 (2013).
  • Kirillin M , ShirmanovaM, SirotkinaM, BugrovaM, KhlebtsovB, ZagaynovaE. Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study. J. Biomed. Opt.14 (2), 021017 (2009).
  • Kah JC , OlivoM, ChowTHet al. Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo. J. Biomed. Opt.14 (5),  054015 (2009).
  • Wu C , LiangX, JiangH. Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography. Opt. Commun.253 (1–3), 214–221 (2005).
  • Park J , EstradaA, SharpKet al. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt. Express16 (3),  1590–1599 (2008).
  • Hainfeld JF , SlatkinDN, FocellaTM, SmilowitzHM. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol.79 (939), 248–253 (2006).
  • Wang X , PangY, KuG, StoicaG, WangLV. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Opt. Lett.28 (19), 1739–1741 (2003).
  • Lu W , HuangQ, KuGet al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials31 (9),  2617–2626 (2010).
  • Xie H , WangZj, BaoA, GoinsB, PhillipsWT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int. J. Pharm.395 (1–2), 324–330 (2010).
  • Huang Y , HeS, CaoW, CaiK, LiangXJ. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale4 (20), 6135–6149 (2012).
  • Dong W , LiY, NiuDet al. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater.23 (45),  5392–5397 (2011).
  • Melancon MP , ElliottA, JiXet al. Theranostics with multifunctional magnetic gold nanoshells: photothermal therapy and t2* magnetic resonance imaging. Invest. Radiol.46 (2),  132–140 (2011).
  • Chen W , Ayala-OrozcoC, BiswalNCet al. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine (Lond.) doi:https://doi.org/10.2217/nnm.13.84 (2013) ( Epub ahead of print).
  • Bardhan R , GradyNK, ColeJR, JoshiA, HalasNJ. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano3 (3), 744–752 (2009).
  • Bardhan R , GradyNK, HalasNJ. Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. Small4 (10), 1716–1722 (2008).
  • Tam F , GoodrichGP, JohnsonBR, HalasNJ. Plasmonic enhancement of molecular fluorescence. Nano Lett.7 (2), 496–501 (2007).
  • Hirsch LR , StaffordRJ, BanksonJAet al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA100 (23),  13549–13554 (2003).
  • Nguyen HT , TranKK, SunB, ShenH. Activation of inflammasomes by tumor cell death mediated by gold nanoshells. Biomaterials33 (7), 2197–2205 (2012).
  • Roti Roti JL . Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events. Int. J. Hyperthermia24 (1), 3–15 (2008).
  • Diagaradjane P , ShettyA, WangJCet al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett.8 (5),  1492–1500 (2008).
  • Dean M , FojoT, BatesS. Tumour stem cells and drug resistance. Nat. Rev. Cancer5 (4), 275–284 (2005).
  • Pelicci PG , DaltonP, OrecchiaR. Heating cancer stem cells to reduce tumor relapse. Breast Cancer Res.13 (3), 305 (2011).
  • Gao F , YeY, ZhangY, YangJ. Water bath hyperthermia reduces stemness of colon cancer cells. Clin. Biochem.46 (16–17), 1747–1750 (2013).
  • Torigoe T , HirohashiY, YasudaK, SatoN. Constitutive expression and activation of stress response genes in cancer stem-like cells/tumour initiating cells: potent targets for cancer stem cell therapy. Int. J. Hyperthermia29 (5), 436–441 (2013).
  • Atkinson RL , ZhangM, DiagaradjanePet al. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci. Transl. Med.2 (55),  55ra79 (2010).
  • Lapotko D . Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications. Nanomedicine (Lond.)4 (7), 813–845 (2009).
  • Wagner DS , DelkNA, Lukianova-HlebEY, HafnerJH, Farach-CarsonMC, LapotkoDO. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials31 (29), 7567–7574 (2010).
  • Lukianova-Hleb EY , RenX, ZasadzinskiJA, WuX, LapotkoDO. Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells. Adv. Mater.24 (28), 3831–3837 (2012).
  • Minko T , KopeckovaP, PozharovV, KopecekJ. HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J. Control. Release54 (2), 223–233 (1998).
  • Lukianova-Hleb EY , SamaniegoAP, WenJ, MetelitsaLS, ChangCC, LapotkoDO. Selective gene transfection of individual cells in vitro with plasmonic nanobubbles. J. Control. Release152 (2), 286–293 (2011).
  • Anderson LJ , HansenE, Lukianova-HlebEY, HafnerJH, LapotkoDO. Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J. Control. Release144 (2), 151–158 (2010).
  • Lukianova-Hleb EY , BelyaninA, KashinathS, WuX, LapotkoDO. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials33 (6), 1821–1826 (2012).
  • Shen H , YouJ, ZhangGet al. Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv. Healthcare Mater.1 (1),  84–89 (2012).
  • You J , ZhangR, ZhangGet al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J. Control. Release158 (2),  319–328 (2012).
  • You J , ZhangG, LiC. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano4 (2), 1033–1041 (2010).
  • Lee HJ , LiuY, ZhaoJet al. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J. Control. Release172 (1),  152–158 (2013).
  • You J , ZhangR, XiongCet al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res.72 (18),  4777–4786 (2012).
  • Kanasty R , DorkinJR, VegasA, AndersonD. Delivery materials for siRNA therapeutics. Nat. Mater.12 (11), 967–977 (2013).
  • Sun TM , DuJZ, YanLF, MaoHQ, WangJ. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials29 (32), 4348–4355 (2008).
  • Huschka R , BarhoumiA, LiuQ, RothJA, JiL, HalasNJ. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano6 (9), 7681–7691 (2012).
  • Krpetic Z , NativoP, SeeV, PriorIA, BrustM, VolkM. Inflicting controlled nonthermal damage to subcellular structures by laser-activated gold nanoparticles. Nano Lett.10 (11), 4549–4554 (2010).
  • Lu W , ZhangG, ZhangRet al. Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res.70 (8),  3177–3188 (2010).
  • Chen CC , LinYP, WangCWet al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc.128 (11),  3709–3715 (2006).
  • Gad SC , SharpKL, MontgomeryC, PayneJD, GoodrichGP. Evaluation of the toxicity of intravenous delivery of auroshell particles (gold–silica nanoshells). Int. J. Toxicol.31 (6), 584–594 (2012).
  • Goodman AM , CaoY, UrbanCet al. The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells. ACS Nano8 (4),  3222–3231 (2014).
  • Akchurin G , KhlebtsovB, AkchurinG, TuchinV, ZharovV, KhlebtsovN. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology19 (1), 015701 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.