466
Views
4
CrossRef citations to date
0
Altmetric
Review

Delivery of Therapeutics Using Nanocarriers for Targeting Cancer Cells and Cancer Stem Cells

, &
Pages 143-160 | Published online: 19 Jan 2015

References

  • Velasco-Velázquez MA , HomsiN , De La FuenteM , PestellRG . Breast cancer stem cells . Int. J. Biochem. Cell Biol.44 ( 4 ), 573 – 577 ( 2012 ).
  • Lapidot T , SirardC , VormoorJet al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice . Nature367 ( 6464 ), 645 – 648 ( 1994 ).
  • Eramo A , LottiF , SetteGet al. Identification and expansion of the tumorigenic lung cancer stem cell population . Cell Death Differ.15 ( 3 ), 504 – 514 ( 2007 ).
  • Collins AT , BerryPA , HydeC , StowerMJ , MaitlandNJ . Prospective identification of tumorigenic prostate cancer stem cells . Cancer Res.65 ( 23 ), 10946 – 10951 ( 2005 ).
  • Singh SK , ClarkeID , TerasakiMet al. Identification of a cancer stem cell in human brain tumors . Cancer Res.63 ( 18 ), 5821 – 5828 ( 2003 ).
  • Li C , HeidtDG , DalerbaPet al. Identification of pancreatic cancer stem cells . Cancer Res.67 ( 3 ), 1030 – 1037 ( 2007 ).
  • Takaishi S , OkumuraT , WangTC . Gastric cancer stem cells . J. Clin. Oncol.26 ( 17 ), 2876 – 2882 ( 2008 ).
  • Takaishi S , OkumuraT , TuSet al. Identification of gastric cancer stem cells using the cell surface marker CD44 . Stem Cells27 ( 5 ), 1006 – 1020 ( 2009 ).
  • Zhou L , WeiX , ChengL , TianJ , JiangJJ . CD133, one of the markers of cancer stem cells in Hep‐2 cell line . Laryngoscope117 ( 3 ), 455 – 460 ( 2007 ).
  • Hirschmann-Jax C , FosterA , WulfGet al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells . Proc. Natl Acad. Sci. USA101 ( 39 ), 14228 – 14233 ( 2004 ).
  • Szotek PP , Pieretti-VanmarckeR , MasiakosPTet al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness . Proc. Natl Acad. Sci. USA103 ( 30 ), 11154 – 11159 ( 2006 ).
  • Abubaker K , LatifiA , LuworRet al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden . Mol. Cancer12 ( 1 ), 24 ( 2013 ).
  • Printz C . Radiation treatment generates therapy‐resistant cancer stem cells from less aggressive breast cancer cells . Cancer118 ( 13 ), 3225 – 3225 ( 2012 ).
  • Dean M , FojoT , BatesS . Tumour stem cells and drug resistance . Nat. Rev. Cancer5 ( 4 ), 275 – 284 ( 2005 ).
  • Visvader JE , LindemanGJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions . Nat. Rev. Cancer8 ( 10 ), 755 – 768 ( 2008 ).
  • Riccioni R , DupuisML , BernabeiMet al. The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor . Blood Cells Mol. Dis.45 ( 1 ), 86 – 92 ( 2010 ).
  • Milane L , DuanZ , AmijiM . Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer . PLoS ONE6 ( 9 ), e24075 ( 2011 ).
  • KüHnle M , EggerM , MüLlerCet al. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar . J. Med. Chem.52 ( 4 ), 1190 – 1197 ( 2009 ).
  • Deng T , LiuJC , PritchardKI , EisenA , ZacksenhausE . Preferential killing of breast tumor initiating cells by N, N-diethyl-2-[4-(phenylmethyl) phenoxy] ethanamine/tesmilifene . Clin. Cancer Res.15 ( 1 ), 119 – 130 ( 2009 ).
  • Hirsch HA , IliopoulosD , TsichlisPN , StruhlK . Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission . Cancer Res.69 ( 19 ), 7507 – 7511 ( 2009 ).
  • Kakarala M , BrennerDE , KorkayaHet al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine . Breast Cancer Res. Treat.122 ( 3 ), 777 – 785 ( 2010 ).
  • Chen D , PamuS , CuiQ , ChanTH , DouQP . Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells . Bioorg. Med. Chem.20 ( 9 ), 3031 – 3037 ( 2012 ).
  • Li Y , ZhangT , KorkayaHet al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells . Clin. Cancer Res.16 ( 9 ), 2580 – 2590 ( 2010 ).
  • Abraham J , EdgerlyM , WilsonRet al. A phase I study of the P-glycoprotein antagonist tariquidar in combination with vinorelbine . Clin. Cancer Res.15 ( 10 ), 3574 – 3582 ( 2009 ).
  • Pusztai L , WagnerP , IbrahimNet al. Phase II study of tariquidar, a selective P‐glycoprotein inhibitor, in patients with chemotherapy‐resistant, advanced breast carcinoma . Cancer104 ( 4 ), 682 – 691 ( 2005 ).
  • Martin-Castillo B , DorcaJ , Vazquez-MartinAet al. Incorporating the antidiabetic drug metformin in HER2-positive breast cancer treated with neo-adjuvant chemotherapy and trastuzumab: an ongoing clinical–translational research experience at the Catalan Institute of Oncology . Ann. Oncol.21 ( 1 ), 187 – 189 ( 2010 ).
  • Kim J , LimW , KimE-Ket al. Phase II randomized trial of neoadjuvant metformin plus letrozole versus placebo plus letrozole for estrogen receptor positive postmenopausal breast cancer (METEOR) . BMC Cancer14 ( 1 ), 170 ( 2014 ).
  • Anand P , KunnumakkaraAB , NewmanRA , AggarwalBB . Bioavailability of curcumin: problems and promises . Mol. Pharm.4 ( 6 ), 807 – 818 ( 2007 ).
  • Boehmerle W , EndresM . Salinomycin induces calpain and cytochrome c-mediated neuronal cell death . Cell Death Dis.2 ( 6 ), e168 ( 2011 ).
  • Mallick S . Metformin induced acute pancreatitis precipitated by renal failure . Postgrad. Med. J.80 ( 942 ), 239 – 240 ( 2004 ).
  • Mcguinness M , TalbertR . Phenformin-induced lactic acidosis: a forgotten adverse drug reaction . Ann. Pharmacother.27 ( 10 ), 1183 – 1187 ( 1993 ).
  • Peer D , KarpJM , HongS , FarokhzadOC , MargalitR , LangerR . Nanocarriers as an emerging platform for cancer therapy . Nat. Nanotechnol.2 ( 12 ), 751 – 760 ( 2007 ).
  • Zhu H , ChenH , ZengXet al. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance . Biomaterials35 ( 7 ), 2391 – 2400 ( 2014 ).
  • Li Y , WangF , SunT , DuJ , YangX , WangJ . Surface-modulated and thermoresponsive polyphosphoester nanoparticles for enhanced intracellular drug delivery . Sci. China Chem.57 ( 4 ), 1 – 7 ( 2014 ).
  • Lei C , CuiY , ZhengL , Kah-Hoe ChowP , WangC-H . Development of a gene/drug dual delivery system for brain tumor therapy: potent inhibition via RNA interference and synergistic effects . Biomaterials34 ( 30 ), 7483 – 7494 ( 2013 ).
  • Grenha A , SeijoB , Remuñán-LópezC . Microencapsulated chitosan nanoparticles for lung protein delivery . Eur. J. Pharm. Sci.25 ( 4 ), 427 – 437 ( 2005 ).
  • Park K , LeeS , KangE , KimK , ChoiK , KwonIC . New generation of multifunctional nanoparticles for cancer imaging and therapy . Adv. Funct. Mat.19 ( 10 ), 1553 – 1566 ( 2009 ).
  • Tan YF , MundargiRC , ChenMHAet al. Layer‐by‐layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing . Small10 ( 9 ), 1790 – 1798 ( 2014 ).
  • Mccarron PA , MaroufWM , QuinnDJet al. Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells . Bioconjug. Chem.19 ( 8 ), 1561 – 1569 ( 2008 ).
  • Patil YB , SwaminathanSK , SadhukhaT , MaL , PanyamJ . The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance . Biomaterials31 ( 2 ), 358 – 365 ( 2010 ).
  • Yuan YY , MaoCQ , DuXJ , DuJZ , WangF , WangJ . Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor . Adv. Mater.24 ( 40 ), 5476 – 5480 ( 2012 ).
  • Hamaguchi T , MatsumuraY , SuzukiMet al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel . Br. J. Cancer92 ( 7 ), 1240 – 1246 ( 2005 ).
  • Jokerst JV , LobovkinaT , ZareRN , GambhirSS . Nanoparticle PEGylation for imaging and therapy . Nanomedicine6 ( 4 ), 715 – 728 ( 2011 ).
  • Li YY , ChengH , ZhuJLet al. Temperature‐and pH‐sensitive multicolored micellar complexes . Adv. Mater.21 ( 23 ), 2402 – 2406 ( 2009 ).
  • Du J-Z , DuX-J , MaoC-Q , WangJ . Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery . J. Am. Chem. Soc.133 ( 44 ), 17560 – 17563 ( 2011 ).
  • Soppimath KS , TanDW , YangYY . pH‐triggered thermally responsive polymer core–shell nanoparticles for drug delivery . Adv. Mater.17 ( 3 ), 318 – 323 ( 2005 ).
  • Li Y-Y , HuaS-H , XiaoWet al. Dual-vectors of anti-cancer drugs and genes based on pH-sensitive micelles self-assembled from hybrid polypeptide copolymers . J. Mater. Chem.21 ( 9 ), 3100 – 3106 ( 2011 ).
  • Gao Z-G , TianL , HuJ , ParkI-S , BaeYH . Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles . J. Control. Release152 ( 1 ), 84 – 89 ( 2011 ).
  • Lee SJ , KooH , LeeD-Eet al. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system . Biomaterials32 ( 16 ), 4021 – 4029 ( 2011 ).
  • Wiradharma N , ZhangY , VenkataramanS , HedrickJL , YangYY . Self-assembled polymer nanostructures for delivery of anticancer therapeutics . Nano Today4 ( 4 ), 302 – 317 ( 2009 ).
  • Maeda H , WuJ , SawaT , MatsumuraY , HoriK . Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review . J. Control. Release65 ( 1 ), 271 – 284 ( 2000 ).
  • Liu S-Q , WiradharmaN , GaoS-J , TongYW , YangY-Y . Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs . Biomaterials28 ( 7 ), 1423 – 1433 ( 2007 ).
  • Lee AL , WangY , ChengHY , PervaizS , YangYY . The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles . Biomaterials30 ( 5 ), 919 – 927 ( 2009 ).
  • Kim D , JeongYY , JonS . A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer . ACS Nano4 ( 7 ), 3689 – 3696 ( 2010 ).
  • Wilson BJ , SchattonT , ZhanQet al. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients . Cancer Res.71 ( 15 ), 5307 – 5316 ( 2011 ).
  • Blanpain C , MohrinM , SotiropoulouPA , PasseguéE . DNA-damage response in tissue-specific and cancer stem cells . Cell Stem Cell8 ( 1 ), 16 – 29 ( 2011 ).
  • Sachlos E , RisueñoRM , LarondeSet al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells . Cell149 ( 6 ), 1284 – 1297 ( 2012 ).
  • Wang Y-C , ChaoT-K , ChangC-C , YoY-T , YuM-H , LaiH-C . Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells . PLoS ONE8 ( 9 ), e74538 ( 2013 ).
  • Bednar F , SimeoneDM . Metformin and cancer stem cells: old drug, new targets . Cancer Prev. Res. (Philadelphia)5 ( 3 ), 351 – 354 ( 2012 ).
  • Wang K , ZhangT , LiuLet al. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells . Int. J. Nanomedicine7 , 4487 ( 2012 ).
  • Zhang L , LiL , JiaoMet al. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog–Gli1 pathway . Cancer Lett.323 ( 1 ), 48 – 57 ( 2012 ).
  • Perlstein B , FinnissSA , MillerCet al. TRAIL conjugated to nanoparticles exhibits increased anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo . Neuro Oncol.15 ( 1 ), 29 – 40 ( 2013 ).
  • Datta J , SmithA , LangJCet al. microRNA-107 functions as a candidate tumor-suppressor gene in head and neck squamous cell carcinoma by downregulation of protein kinase C&epsiv . Oncogene31 ( 36 ), 4045 – 4053 ( 2011 ).
  • Barenholz YC . Doxil®—the first FDA-approved nano-drug: lessons learned . J. Control. Release160 ( 2 ), 117 – 134 ( 2012 ).
  • Matsumura Y , KataokaK . Preclinical and clinical studies of anticancer agent‐incorporating polymer micelles . Cancer Sci.100 ( 4 ), 572 – 579 ( 2009 ).
  • Wang K , LiuL , ZhangTet al. Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer . Int. J. Nanomedicine6 , 3207 ( 2011 ).
  • Liu Y , LuW-L , GuoJet al. A potential target associated with both cancer and cancer stem cells: a combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes . J. Control. Release129 ( 1 ), 18 – 25 ( 2008 ).
  • Guo J , LuW-L . Effects of stealth liposomal daunorubicin plus tamoxifen on the breast cancer and cancer stem cells . J. Pharm. Pharm. Sci.13 ( 2 ), 136 – 151 ( 2010 ).
  • Zhang Y , ZhangH , WangX , WangJ , ZhangX , ZhangQ . The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles . Biomaterials33 ( 2 ), 679 – 691 ( 2012 ).
  • Ke X-Y , Lin NgVW , GaoS-J , TongYW , HedrickJL , YangYY . Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells . Biomaterials35 ( 3 ), 1096 – 108 ( 2013 ).
  • Ebrahim Attia AB , YangC , TanJPet al. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles . Biomaterials34 ( 12 ), 3132 – 3140 ( 2013 ).
  • Li R-J , YingX , ZhangYet al. All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells . J. Control. Release149 ( 3 ), 281 – 291 ( 2011 ).
  • Pratt RC , NederbergF , WaymouthRM , HedrickJL . Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth) acrylate for ring-opening polymerization . Chem. Commun. ( 1 ), 114 – 116 ( 2008 ).
  • Pratt RC , LohmeijerBG , LongDAet al. Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co) polymers . Macromolecules39 ( 23 ), 7863 – 7871 ( 2006 ).
  • Yang C , TanJP , ChengWet al. Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability . Nano Today5 ( 6 ), 515 – 523 ( 2010 ).
  • Kim SH , TanJP , FukushimaKet al. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers . Biomaterials32 ( 23 ), 5505 – 5514 ( 2011 ).
  • Li S-D , HuangL . Pharmacokinetics and biodistribution of nanoparticles . Mol. Pharm.5 ( 4 ), 496 – 504 ( 2008 ).
  • Khan M , OngZY , WiradharmaN , AttiaABE , YangYY . Advanced materials for co‐delivery of drugs and genes in cancer therapy . Adv. Healthc. Mater.1 ( 4 ), 373 – 392 ( 2012 ).
  • Piao L , ZhangM , DattaJet al. Lipid-based nanoparticle delivery of pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma . Mol. Ther.20 ( 6 ), 1261 – 1269 ( 2012 ).
  • Liu C , KelnarK , LiuBet al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44 . Nat. Med.17 ( 2 ), 211 – 215 ( 2011 ).
  • Shi S , HanL , GongT , ZhangZ , SunX . Systemic delivery of microRNA‐34a for cancer stem cell therapy . Angew. Chem. Int. Ed. Engl.52 ( 14 ), 3901 – 3905 ( 2013 ).
  • Iorio MV , FerracinM , LiuC-Get al. MicroRNA gene expression deregulation in human breast cancer . Cancer Res.65 ( 16 ), 7065 – 7070 ( 2005 ).
  • Iorio MV , VisoneR , Di LevaGet al. MicroRNA signatures in human ovarian cancer . Cancer Res.67 ( 18 ), 8699 – 8707 ( 2007 ).
  • Xu N , PapagiannakopoulosT , PanG , ThomsonJA , KosikKS . MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells . Cell137 ( 4 ), 647 – 658 ( 2009 ).
  • Yang Y-P , ChienY , ChiouG-Yet al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI . Biomaterials33 ( 5 ), 1462 – 1476 ( 2012 ).
  • Chiou G-Y , CherngJ-Y , HsuH-Set al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial–mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma . J. Control. Release159 ( 2 ), 240 – 250 ( 2012 ).
  • Liu C , ZhaoG , LiuJet al. Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel . J. Control. Release140 ( 3 ), 277 – 283 ( 2009 ).
  • Kato T , NatsumeA , TodaHet al. Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells . Gene Ther.17 ( 11 ), 1363 – 1371 ( 2010 ).
  • Liu Q , LiR-T , QianH-Qet al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles . Biomaterials34 ( 29 ), 7191 – 7203 ( 2013 ).
  • Takebe N , HarrisPJ , WarrenRQ , IvySP . Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways . Nat. Rev. Clin. Oncol.8 ( 2 ), 97 – 106 ( 2011 ).
  • Beh CW , SeowWY , WangYet al. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug . Biomacromolecules10 ( 1 ), 41 – 48 ( 2008 ).
  • Dou J , HeX , LiuYet al. Targeted therapeutic effect of anti-ABCG2 antibody combined with nano silver and vincristine on mouse myeloma cancer stem cells . J. Nanopart. Res.15 ( 12 ), 1 – 12 ( 2013 ).
  • Ginestier C , LiuS , DiebelMEet al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts . J. Clin. Invest.120 ( 2 ), 485 ( 2010 ).
  • Ma X , XiL , LuoDet al. Anti-tumor effects of the peptide TMTP1-GG-D (KLAKLAK) 2 on highly metastatic cancers . PLoS ONE7 ( 9 ), e42685 ( 2012 ).
  • Mcclements L , YakkundiA , PapaspyropoulosAet al. Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway . Clin. Cancer Res.19 ( 14 ), 3881 – 3893 ( 2013 ).
  • Piotrowicz RS , DamajBB , HachichaM , IncardonaF , HowellSB , FinlaysonM . A6 peptide activates CD44 adhesive activity, induces FAK and MEK phosphorylation, and inhibits the migration and metastasis of CD44-expressing cells . Mol. Cancer Ther.10 ( 11 ), 2072 – 2082 ( 2011 ).
  • Bertrand G , MaaloufM , BoivinAet al. Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation . Stem Cell Rev.10 ( 1 ), 114 – 126 ( 2014 ).
  • Moon CM , KwonJH , KimJSet al. Nonsteroidal anti‐inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer . Int. J. Cancer134 ( 3 ), 519 – 529 ( 2014 ).
  • Yallapu MM , JaggiM , ChauhanSC . Curcumin nanoformulations: a future nanomedicine for cancer . Drug Discov. Today17 ( 1 ), 71 – 80 ( 2012 ).
  • Bisht S , FeldmannG , SoniSet al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy . J. Nanobiotechnol.5 ( 3 ), 1 – 18 ( 2007 ).
  • Lim KJ , BishtS , BarEE , MaitraA , EberhartCG . A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors . Cancer Biol. Ther.11 ( 5 ), 464 – 473 ( 2011 ).
  • Zhang L , YaoH-J , YuYet al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells . Biomaterials33 ( 2 ), 565 – 582 ( 2012 ).
  • Lee SH , NamHJ , KangHJ , KwonHW , LimYC . Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway . Eur. J. Cancer49 ( 15 ), 3210 – 3218 ( 2013 ).
  • Bar EE , ChaudhryA , LinAet al. Cyclopamine‐mediated hedgehog pathway inhibition depletes stem‐like cancer cells in glioblastoma . Stem Cells25 ( 10 ), 2524 – 2533 ( 2007 ).
  • Mueller MT , HermannPC , WitthauerJet al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer . Gastroenterology137 ( 3 ), 1102 – 1113 ( 2009 ).
  • Goff DJ , RecartAC , SadaranganiAet al. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition . Cell Stem Cell12 ( 3 ), 316 – 328 ( 2013 ).
  • Yuan P , ItoK , Perez-LorenzoRet al. Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma . Proc. Natl Acad. Sci. USA110 ( 45 ), 18226 – 18231 ( 2013 ).
  • Herpel E , JensenK , MuleyTet al. The cancer stem cell antigens CD133, BCRP1/ABCG2 and CD117/c-KIT are not associated with prognosis in resected early-stage non-small cell lung cancer . Anticancer Res.31 ( 12 ), 4491 – 4500 ( 2011 ).
  • Li F , ZengH , YingK . The combination of stem cell markers CD133 and ABCG2 predicts relapse in stage I non-small cell lung carcinomas . Med. Oncol.28 ( 4 ), 1458 – 1462 ( 2011 ).
  • Liu S , WichaMS . Targeting breast cancer stem cells . J. Clin. Oncol.28 ( 25 ), 4006 – 4012 ( 2010 ).
  • Zhou S , SchuetzJD , BuntingKDet al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype . Nat. Med.7 ( 9 ), 1028 – 1034 ( 2001 ).
  • Dick JE . Breast cancer stem cells revealed . Proc. Natl Acad. Sci. USA100 ( 7 ), 3547 – 3549 ( 2003 ).
  • Schatton T , MurphyGF , FrankNYet al. Identification of cells initiating human melanomas . Nature451 ( 7176 ), 345 – 349 ( 2008 ).
  • Zimmerer RM , KornP , DemouginPet al. Functional features of cancer stem cells in melanoma cell lines . Cancer Cell Int.13 ( 1 ), 78 ( 2013 ).
  • Civenni G , WalterA , KobertNet al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth . Cancer Res.71 ( 8 ), 3098 – 3109 ( 2011 ).
  • Jiang Y , HeY , LiHet al. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer . Gastric Cancer15 ( 4 ), 440 – 450 ( 2012 ).
  • Jiang J , ZhangY , ChuaiSet al. Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype . Oncogene31 ( 6 ), 671 – 682 ( 2012 ).
  • Todaro M , FrancipaneMG , MedemaJP , StassiG . Colon cancer stem cells: promise of targeted therapy . Gastroenterology138 ( 6 ), 2151 – 2162 ( 2010 ).
  • Ricci-Vitiani L , FabriziE , PalioE , De MariaR . Colon cancer stem cells . J. Mol. Med.87 ( 11 ), 1097 – 1104 ( 2009 ).
  • Hosen N , ParkCY , TatsumiNet al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia . Proc. Natl Acad. Sci. USA104 ( 26 ), 11008 – 11013 ( 2007 ).
  • Wang JC , DickJE . Cancer stem cells: lessons from leukemia . Trends Cell Biol.15 ( 9 ), 494 – 501 ( 2005 ).
  • Jin L , LeeEM , RamshawHSet al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor α chain, eliminates human acute myeloid leukemic stem cells . Cell Stem Cell5 ( 1 ), 31 – 42 ( 2009 ).
  • Lee CJ , DoschJ , SimeoneDM . Pancreatic cancer stem cells . J. Clin. Oncol.26 ( 17 ), 2806 – 2812 ( 2008 ).
  • Oishi N , WangXW . Novel therapeutic strategies for targeting liver cancer stem cells . Int. J. Biol. Sci.7 ( 5 ), 517 – 535 ( 2011 ).
  • Yamashita T , WangXW . Cancer stem cells in the development of liver cancer . J. Clin. Invest.123 ( 5 ), 1911 – 1918 ( 2013 ).
  • Vescovi AL , GalliR , ReynoldsBA . Brain tumour stem cells . Nat. Rev. Cancer6 ( 6 ), 425 – 436 ( 2006 ).
  • Mao X-G , ZhangX , XueX-Yet al. Brain tumor stem-like cells identified by neural stem cell marker CD15 . Transl. Oncol.2 ( 4 ), 247 ( 2009 ).
  • Gilbert CA , RossAH . Cancer stem cells: cell culture, markers, and targets for new therapies . J. Cell. Biochem.108 ( 5 ), 1031 – 1038 ( 2009 ).
  • Yang Y , ChangJ . Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells . Cancer Invest.26 ( 7 ), 725 – 733 ( 2008 ).
  • Huang P , WatanabeM , KakuHet al. Cancer stem cell-like characteristics of a CD133+ subpopulation in the J82 human bladder cancer cell line . Mol. Clin. Oncol.1 ( 1 ), 180 – 184 ( 2013 ).
  • N Tran M , JineshG , J McConkeyD , M KamatA . Bladder cancer stem cells . Curr. Stem Cell Res. Ther.5 ( 4 ), 387 – 395 ( 2010 ).
  • Silva IA , BaiS , McleanKet al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival . Cancer Res.71 ( 11 ), 3991 – 4001 ( 2011 ).
  • Rizzo S , HerseyJM , MellorPet al. Ovarian cancer stem cell–like side populations are enriched following chemotherapy and overexpress EZH2 . Mol. Cancer Ther.10 ( 2 ), 325 – 335 ( 2011 ).
  • Collins AT , MaitlandNJ . Prostate cancer stem cells . Eur. J. Cancer42 ( 9 ), 1213 – 1218 ( 2006 ).
  • Lang S , FrameF , CollinsA . Prostate cancer stem cells . J. Pathol.217 ( 2 ), 299 – 306 ( 2009 ).
  • Eramo A , LottiF , SetteGet al. Identification and expansion of the tumorigenic lung cancer stem cell population . Cell Death Differ.15 ( 3 ), 504 – 514 ( 2008 ).
  • Ailles L , PrinceM . Cancer stem cells in head and neck squamous cell carcinoma . Cancer Stem Cells175 – 193 ( 2009 ).
  • Krishnamurthy S , NörJ . Head and neck cancer stem cells . J. Dent. Res.91 ( 4 ), 334 – 340 ( 2012 ).
  • Prince M , SivanandanR , KaczorowskiAet al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma . Proc. Natl Acad. Sci. USA104 ( 3 ), 973 – 978 ( 2007 ).
  • Feng D , PengC , LiCet al. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri . Oncol. Rep.22 ( 5 ), 1129 – 1134 ( 2009 ).
  • Zhang S-L , WangY-S , ZhouT , YuX-W , WeiZ-T , LiY-L . Isolation and characterization of cancer stem cells from cervical cancer HeLa cells . Cytotechnology64 ( 4 ), 477 – 484 ( 2012 ).
  • Yu L , YangL , AnW , SuX . Anticancer bioactive peptide‐3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells . J. Cell. Biochem.115 ( 4 ), 697 – 711 ( 2014 ).
  • Zubeldia IG , BleauA-M , RedradoMet al. Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144 . Exp. Cell. Res.319 ( 3 ), 12 – 22 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.