651
Views
0
CrossRef citations to date
0
Altmetric
Review

Mitochondria-Targeting Particles

, , , &
Pages 2531-2543 | Published online: 09 Dec 2014

References

  • Wang B , GallifordCV, LowPS. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine (Lond.)9 (2), 313–330 (2014).
  • Martinho N , DamgeC, ReisC. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol.2 (5A), 510–526 (2011).
  • Weissig V , BoddapatiSV, JabrL, D'SouzaGG. Mitochondria-specific nanotechnology. Nanomedicine (Lond.)2 (3), 275–285 (2007).
  • Murphy MP , SmithRA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv. Drug Deliv. Rev.41 (2), 235–250 (2000).
  • Bayeva M , GheorghiadeM, ArdehaliH. Mitochondria as a therapeutic target in heart failure. J. Am. Coll. Cardiol.61 (6), 599–610 (2013).
  • Moreira PI , ZhuX, WangXet al. Mitochondria: atherapeutic target in neurodegeneration. Biochim. Biophys. Acta1802 (1), 212–220 (2010).
  • Taylor RW , TurnbullDM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet.6 (5), 389–402 (2005).
  • Walters AM , PorterGAJr, BrookesPS. Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ. Res.111 (9), 1222–1236 (2012).
  • Joiner ML , KovalOM, LiJet al. CaMKII determines mitochondrial stress responses in heart. Nature491 (7423), 269–273 (2012).
  • Pradelli LA , BeneteauM, RicciJE. Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol. Life Sci.67 (10), 1589–1597 (2010).
  • Szeto HH , SchillerPW. Novel therapies targeting inner mitochondrial membrane – from discovery to clinical development. Pharm. Res.28 (11), 2669–2679 (2011).
  • Kinnally KW , PeixotoPM, RyuS-Y, DejeanLM. Is mPTP the gatekeeper for necrosis, apoptosis, or both?Biochim. Biophys. Acta1813 (4), 616–622 (2011).
  • Dumont M , LinMT, BealMF. Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer's disease. J. Alzheimers Dis.20 (Suppl. 2), S633–S643 (2010).
  • Jin H , KanthasamyA, GhoshA, AnantharamV, KalyanaramanB, KanthasamyAG. Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochim. Biophys. Acta1842 (8), 1282–1294 (2013).
  • Reddy PH . Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med.10 (4), 291–315 (2008).
  • Moreira PI , ZhuX, WangXet al. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta1802 (1), 212–220 (2010).
  • Uttara B , SinghAV, ZamboniP, MahajanRT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol.7 (1), 65–74 (2009).
  • Rohlena J , DongLF, RalphSJ, NeuzilJ. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid. Redox Signal.15 (12), 2951–2974 (2011).
  • Ferrin G , LinaresCI, MuntaneJ. Mitochondrial drug targets in cell death and cancer. Curr. Pharm. Des.17 (20), 2002–2016 (2011).
  • Wang F , OgasawaraMA, HuangP. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med.31 (1), 75–92 (2010).
  • Marullo R , WernerE, DegtyarevaNet al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One8 (11), e81162 (2013).
  • Sakhrani NM , PadhH. Organelle targeting: third level of drug targeting. Drug Des. Devel. Ther.7, 585–599 (2013).
  • Birk AV , LiuS, SoongYet al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol.24 (8), 1250–1261 (2013).
  • Chakrabarti AK , FeeneyK, AbuegCet al. Rationale and design of the EMBRACE STEMI study: a Phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. Am. Heart J.165 (4), 509–514.e7 (2013).
  • Smith RA , MerphyMP. Mitochondria-targeted antioxidants as therapies. Discov. Med.11 (57), 106–114 (2011).
  • Smith RA , PorteousCM, GaneAM, MurphyMP. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA100 (9), 5407–5412 (2003).
  • Mao P , ManczakM, ShirendebUP, ReddyPH. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim. Biophys. Acta1832 (12), 2322–2331 (2013).
  • Miquel E , CassinaA, Martinez-PalmaLet al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic. Biol. Med.70, 204–213 (2014).
  • Smith RA , MurphyMP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann. NY Acad. Sci.1201, 96–103 (2010).
  • Chamberlain GR , TulumelloDV, KelleySO. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol.8 (7), 1389–1395 (2013).
  • Bangham AD , StandishMM, WatkinsJC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol.13 (1), 238–252 (1965).
  • Chang HI , YehMK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine7, 49–60 (2012).
  • Allen TM , CullisPR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65 (1), 36–48 (2013).
  • Weissig V , LaschJ, ErdosG, MeyerHW, RoweTC, HughesJ. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm. Res.15 (2), 334–337 (1998).
  • Weissig V , LizanoC, TorchilinVP. Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv.7 (1), 1–5 (2000).
  • Weissig V , D'souzaGG, TorchilinVP. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control. Release75 (3), 401–408 (2001).
  • D'souza GG , RammohanR, ChengSM, TorchilinVP, WeissigV. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control. Release92 (1–2), 189–197 (2003).
  • Andre N , CarreM, BrasseurGet al. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett.532 (1–2), 256–260 (2002).
  • D'souza GG , ChengSM, BoddapatiSV, HorobinRW, WeissigV. Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J. Drug Target.16 (7), 578–585 (2008).
  • Men Y , WangXX, LiRJet al. The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals. Int. J. Nanomedicine6, 3125–3137 (2011).
  • Zhang L , YaoHJ, YuYet al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials33 (2), 565–582 (2012).
  • Yu Y , WangZH, ZhangLet al. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials33 (6), 1808–1820 (2012).
  • Collnot EM , BaldesC, SchaeferUF, EdgarKJ, WempeMF, LehrCM. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol. Pharm.7 (3), 642–651 (2010).
  • Wang XX , LiYB, YaoHJet al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials32 (24), 5673–5687 (2011).
  • Li N , ZhangCX, WangXXet al. Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways. Biomaterials34 (13), 3366–3380 (2013).
  • Carter LG , D'orazioJA, PearsonKJ. Resveratrol and cancer: a focus on in vivo evidence. Endocr. Relat. Cancer21 (3), R209–R225 (2014).
  • Pan Y , ZhaoW, WangJ, LiuQ, YangG, LiJ. [Establishment of a multidrug resistance cell line A549/cDDP of human lung adenocarcinoma and expression analysis of multidrug resistance-associated genes.]. Zhongguo Fei Ai Za Zhi12 (3), 187–192 (2009).
  • Mullen TD , ObeidLM. Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med. Chem.12 (4), 340–363 (2012).
  • Boddapati SV , D'souzaGG, ErdoganS, TorchilinVP, WeissigV. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett.8 (8), 2559–2563 (2008).
  • Solomon MA , ShahAA, D'SouzaGG. In vitro assessment of the utility of stearyl triphenyl phosphonium modified liposomes in overcoming the resistance of ovarian carcinoma Ovcar-3 cells to paclitaxel. Mitochondrion13 (5), 464–472 (2013).
  • Biswas S , DodwadkarNS, DeshpandePP, TorchilinVP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium–PEG–PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release159 (3), 393–402 (2012).
  • Patel NR , HatziantoniouS, GeorgopoulosAet al. Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J. Liposome Res.20 (3), 244–249 (2010).
  • Zhou J , ZhaoWY, MaXet al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials34 (14), 3626–3638 (2013).
  • Wagle MA , MartinvilleLE, D'SouzaGG. The utility of an isolated mitochondrial fraction in the preparation of liposomes for the specific delivery of bioactives to mitochondria in live mammalian cells. Pharm. Res.28 (11), 2790–2796 (2011).
  • Yamada Y , AkitaH, KamiyaHet al. MITO-Porter: aliposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta1778 (2), 423–432 (2008).
  • Yasuzaki Y , YamadaY, HarashimaH. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes. Biochem. Biophys. Res. Commun.397 (2), 181–186 (2010).
  • Kawamura E , YamadaY, HarashimaH. Mitochondrial targeting functional peptides as potential devices for the mitochondrial delivery of a DF-MITO-Porter. Mitochondrion13 (6), 610–614 (2013).
  • Yamada Y , FurukawaR, YasuzakiY, HarashimaH. Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol. Ther.19 (8), 1449–1456 (2011).
  • Khalil IA , KogureK, FutakiS, HarashimaH. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem.281 (6), 3544–3551 (2006).
  • Yamada Y , HarashimaH. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials33 (5), 1589–1595 (2012).
  • Lu JM , WangX, Marin-MullerCet al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn.9 (4), 325–341 (2009).
  • Vilar G , Tulla-PucheJ, AlbericioF. Polymers and drug delivery systems. Curr. Drug Deliv.9 (4), 367–394 (2012).
  • Astete CE , SabliovCM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed.17 (3), 247–289 (2006).
  • Marrache S , DharS. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl Acad. Sci. USA109 (40), 16288–16293 (2012).
  • Mishra S , PalaniveluK. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Ann. Indian Acad. Neurol.11 (1), 13–19 (2008).
  • Potter PE . Curcumin: a natural substance with potential efficacy in Alzheimer's disease. J. Exp. Pharmacol.5, 9 (2013).
  • Grundlingh J , DarganPI, El-ZanfalyM, WoodDM. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J. Med. Toxicol.7 (3), 205–212 (2011).
  • Rothblat GH , PhillipsMC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol.21 (3), 229–238 (2010).
  • Seimon T , TabasI. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res.50 (Suppl.), S382–S387 (2009).
  • Karaflou M , LambrinoudakiI, ChristodoulakosG. Apoptosis in atherosclerosis: a mini-review. Mini Rev. Med. Chem.8 (9), 912–918 (2008).
  • Marrache S , DharS. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc. Natl Acad. Sci. USA110 (23), 9445–9450 (2013).
  • Marrache S , TundupS, HarnDA, DharS. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy. ACS Nano7 (8), 7392–7402 (2013).
  • Dykman LA , KhlebtsovNG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae3 (2), 34–55 (2011).
  • Ong C , LimJZ, NgCT, LiJJ, YungLY, BayBH. Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr. Med. Chem.20 (6), 772–781 (2013).
  • Dreaden EC , AustinLA, MackeyMA, El-SayedMA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv.3 (4), 457–478 (2012).
  • Ma X , WangX, ZhouM, FeiH. A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv. Healthc. Mater.2 (12), 1638–1643 (2013).
  • Law B , QuintiL, ChoiY, WeisslederR, TungCH. A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol. Cancer Ther.5 (8), 1944–1949 (2006).
  • McCully JD , LevitskyS. The mitochondrial K(ATP) channel and cardioprotection. Ann. Thorac. Surg.75 (2), S667–S673 (2003).
  • Spivak MY , BubnovRV, YemetsIM, LazarenkoLM, TymoshokNO, UlbergZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J.4 (1), 20 (2013).
  • Paunesku T , VogtS, LaiBet al. Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett.7 (3), 596–601 (2007).
  • Wang Y , ZiXY, SuJet al. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int. J. Nanomedicine7, 2641–2652 (2012).
  • Wang Y , YangF, ZhangHXet al. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis.4, e783 (2013).
  • Ragg R , NatalioF, TahirMNet al. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano8 (5), 5182–5189 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.