1,285
Views
4
CrossRef citations to date
0
Altmetric
Review

Gold Nanoparticles as Contrast Agents in x-ray Imaging and Computed Tomography

, , , &
Pages 321-341 | Published online: 20 Jan 2015

References

  • Yu S-B , WatsonAD . Metal-based x-ray contrast media . Chem. Rev.99 ( 9 ), 2353 – 2377 ( 1999 ).
  • Goldman LW . Principles of CT and CT technology . J. Nucl. Med. Technol.35 ( 3 ), 115 – 128 ( 2007 ).
  • de González AB , MaheshM , KimK-Pet al. Projected cancer risks from computed tomographic scans performed in the United States in 2007 . Arch. Intern. Med.169 ( 22 ), 2071 – 2077 ( 2009 ).
  • Kalender WA . X-ray computed tomography . Phys. Med. Biol.51 ( 13 ), R29 – R43 ( 2006 ).
  • Wang G , YuH , De ManB . An outlook on x-ray CT research and development . Med. Phys.35 ( 3 ), 1051 – 1064 ( 2008 ).
  • Flohr TG , McColloughCH , BruderHet al. First performance evaluation of a dual-source CT (DSCT) system . Eur. Radiol.16 ( 2 ), 256 – 268 ( 2006 ).
  • Roessl E , ProksaR . K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors . Phys. Med. Biol.52 ( 15 ), 4679 – 4696 ( 2007 ).
  • Anderson NG , ButlerAP . Clinical applications of spectral molecular imaging: potential and challenges . Contrast Media Mol. Imaging9 ( 1 ), 3 – 12 ( 2014 ).
  • Elliott A . Medical imaging . Nucl. Instrum. Meth. A546 ( 1–2 ), 1 – 13 ( 2005 ).
  • Kircher MF , WillmannJK . Molecular body imaging: MR imaging, CT, and US. Part I. Principles . Radiology263 ( 3 ), 633 – 643 ( 2012 ).
  • Goldman LW . Principles of CT: radiation dose and image quality . J. Nucl. Med. Technol.35 ( 4 ), 213 – 225 ( 2007 ).
  • Lee N , ChoiSH , HyeonT . Nano-sized CT contrast agents . Adv. Mater.25 ( 19 ), 2641 – 2660 ( 2013 ).
  • Osborne ED , SutherlandCG , SchoolAJ , RowntreeLG . Roentgenography of urinary tract during excretion of sodium iodide . JAMA250 ( 20 ), 2848 – 2853 ( 1923 ).
  • Lusic H , GrinstaffMW . X-ray–computed tomography contrast agents . Chem. Rev.113 ( 3 ), 1641 – 1666 ( 2013 ).
  • Hallouard F , AntonN , ChoquetP , ConstantinescoA , VandammeT . Iodinated blood pool contrast media for preclinical x-ray imaging applications – a review . Biomaterials31 ( 24 ), 6249 – 6268 ( 2010 ).
  • Rhee CM , BhanI , AlexanderEK , BrunelliSM . Association between iodinated contrast media exposure and incident hyperthyroidism and hypothyroidism . Arch. Intern. Med.172 ( 2 ), 153 – 159 ( 2012 ).
  • Hainfeld JF , SlatkinDN , SmilowitzHM . The use of gold nanoparticles to enhance radiotherapy in mice . Phys. Med. Biol.49 ( 18 ), N309 – N315 ( 2004 ).
  • Hainfeld JF , SlatkinDN , FocellaTM , SmilowitzHM . Gold nanoparticles: a new x-ray contrast agent . Br. J. Radiol.79 ( 939 ), 248 – 253 ( 2006 ).
  • Hubbell JH , SeltzerSM . Tables of x-ray mass attenuation coefficients and mass energy–absorption coefficients (version 1.4) . National Institute of Standards and Technology , MD, USA ( 2004 ). www.nist.gov/pml/data/xraycoef/index.cfm
  • Sun I-C , EunD-K , NaJHet al. Heparin-coated gold nanoparticles for liver-specific CT imaging . Chem. Eur. J.15 ( 48 ), 13341 – 13347 ( 2009 ).
  • Chanda N , KattumuriV , ShuklaRet al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity . Proc. Natl Acad. Sci. USA107 ( 19 ), 8760 – 8765 ( 2010 ).
  • Cormode DP , RoesslE , ThranAet al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles . Radiology256 ( 3 ), 774 – 782 ( 2010 ).
  • Eck W , NicholsonAI , ZentgrafH , SemmlerW , BartlingS . Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in x-ray computed tomography of live mice . Nano Lett.10 ( 7 ), 2318 – 2322 ( 2010 ).
  • Shilo M , ReuveniT , MotieiM , PopovtzerR . Nanoparticles as computed tomography contrast agents . Nanomedicine7 ( 2 ), 257 – 269 ( 2012 ).
  • Jakhmola A , AntonN , VandammeTF . Inorganic nanoparticles based contrast agents for x-ray computed tomography . Adv. Healthc. Mater.1 ( 4 ), 413 – 431 ( 2012 ).
  • Brannon-Peppas L , BlanchetteJO . Nanoparticle and targeted systems for cancer therapy . Adv. Drug Deliv. Rev.56 ( 11 ), 1649 – 1659 ( 2004 ).
  • Brigger I , DubernetC , CouvreurP . Nanoparticles in cancer therapy and diagnosis . Adv. Drug Deliv. Rev.54 ( 5 ), 631 – 651 ( 2002 ).
  • Tomalia DA . In quest of a systematic framework for unifying and defining nanoscience . J. Nanopart. Res.11 ( 6 ), 1251 – 1310 ( 2009 ).
  • Kannan RM , NanceE , KannanS , TomaliaDA . Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications . J. Intern. Med.276 ( 6 ), 579 – 617 ( 2014 ).
  • Säbel M , AichingerH . Recent developments in breast imaging . Phys. Med. Biol.41 ( 3 ), 315 – 368 ( 1996 ).
  • Huda W , GkanatsiosNA . Radiation dosimetry for extremity radiographs . Health Phys.75 ( 5 ), 492 – 499 ( 1998 ).
  • Ross RD , ColeLE , TilleyJMR , RoederRK . Effects of functionalized gold nanoparticle size on x-ray attenuation and substrate binding affinity . Chem. Mater.26 ( 2 ), 1187 – 1194 ( 2014 ).
  • Rigley S , RigonL , AtaelmannanKet al. Absorption edge subtraction imaging for volumetric measurement in an animal model of malignant brain tumor . Nucl. Instrum. Meth. A548 ( 1–2 ), 88 – 93 ( 2005 ).
  • Cai Q-Y , KimSH , ChoiKSet al. Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice . Invest. Radiol.42 ( 12 ), 797 – 806 ( 2007 ).
  • Kim D , ParkS , LeeJH , JeongYY , JonS . Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging . J. Am. Chem. Soc.129 ( 24 ), 7661 – 7665 ( 2007 ).
  • Xu C , TungGA , SunS . Size and concentration effect of gold nanoparticles on x-ray attenuation as measured on computed tomography . Chem. Mater.20 ( 13 ), 4167 – 4169 ( 2008 ).
  • Guo R , WangH , PengCet al. X-ray attenuation property of dendrimer-entrapped gold nanoparticles . J. Phys. Chem. C114 ( 1 ), 50 – 56 ( 2010 ).
  • Kojima C , UmedaY , OgawaM , HaradaA , MagataY , KonoK . X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer . Nanotechnology21 ( 24 ), 245104 ( 2010 ).
  • Jackson PA , RahmanWNWA , WongCJ , AckerlyT , GesoM . Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents . Eur. J. Radiol.75 ( 1 ), 104 – 109 ( 2010 ).
  • Wang H , ZhengL , GuoRet al. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging . Nanoscale Res. Lett.7 , 190 ( 2012 ).
  • Galper MW , SaungMT , FusterVet al. Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast . Invest. Radiol.47 ( 8 ), 475 – 481 ( 2012 ).
  • Peng C , WangH , GuoRet al. Acetylation of dendrimer-entrapped gold nanoparticles: synthesis, stability, and x-ray attenuation properties . J. Appl. Polym. Sci.119 ( 3 ), 1673 – 1682 ( 2011 ).
  • Berger MJ , HubbellJH , SeltzerSMet al. XCOM: photon cross section database (version 1.5) . National Institute of Standards and Technology , MD, USA ( 2010 ). www.nist.gov/pml/data/xcom/index.cfm
  • Hubbell JH , GimmHA , OverboIJ . Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV–100 GeV photons in elements Z=1 to 100 . J. Phys. Chem. Ref. Data9 , 1023 – 1147 ( 1980 ).
  • Willmann JK , van BruggenN , DinkelborgLM , GambhirSS . Molecular imaging in drug development . Nat. Rev. Drug Discov.7 ( 7 ), 591 – 607 ( 2008 ).
  • Huang P , LeBao , ZhangCet al. Folic acid-conjugated silica-modified gold nanorods for x-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy . Biomaterials32 ( 36 ), 9796 – 9809 ( 2011 ).
  • Hainfeld JF , O’ConnorMJ , DilmanianFA , SlatkinDN , AdamsDJ , SmilowitzHM . Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions . Br. J. Radiol.84 ( 1002 ), 526 – 533 ( 2011 ).
  • Sun I-C , NaJH , JeongSYet al. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging . Pharm. Res.31 ( 6 ), 1418 – 1425 ( 2014 ).
  • Krause W . Delivery of diagnostic agents in computed tomography . Adv. Drug Deliv. Rev.37 ( 1–3 ), 159 – 173 ( 1999 ).
  • Kouris K , SpyrouNM , JacksonDF . Minimum detectable quantities of elements and compounds in a biological matrix . Nucl. Instrum. Meth. Phys. Res.187 ( 2–3 ), 539 – 545 ( 1981 ).
  • Chithrani BD , GhazaniAA , ChanWCW . Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells . Nano Lett.6 ( 4 ), 662 – 668 ( 2006 ).
  • Conner SD , SchmidSL . Regulated portals of entry into the cell . Nature422 , 37 – 44 ( 2003 ).
  • Albanese A , ChanWCW . Effect of gold nanoparticle aggregation on cell uptake and toxicity . ACS Nano5 ( 7 ), 5478 – 5489 ( 2011 ).
  • Mahmoudi M , LynchI , EjtehadiMR , MonopoliMP , BombelliFB , LaurentS . Protein–nanoparticle interactions: opportunities and challenges . Chem. Rev.111 ( 9 ), 5610 – 5637 ( 2011 ).
  • Khlebtsov N , DykmanL . Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies . Chem. Soc. Rev.40 ( 3 ), 1647 – 1671 ( 2011 ).
  • Alkilany AM , MurphyCJ . Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?J. Nanopart. Res.12 ( 7 ), 2313 – 2333 ( 2010 ).
  • Peng C , ZhengL , ChenQet al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography . Biomaterials33 ( 4 ), 1107 – 1119 ( 2012 ).
  • Alric C , TalebJ , Le DucGet al. Gadolinium chelate coated gold nanoparticles as contrast agents for both x-ray computed tomography and magnetic resonance imaging . J. Am. Chem. Soc.130 ( 18 ), 5908 – 5915 ( 2008 ).
  • Boote E , FentG , KattumuriVet al. Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography . Acad. Radiol.17 ( 4 ), 410 – 417 ( 2010 ).
  • Cole LE , Vargo-GogolaT , RoederRK . Contrast-enhanced x-ray detection of breast microcalcifications in a murine model using targeted gold nanoparticles . ACS Nano8 ( 7 ), 7486 – 7496 ( 2014 ).
  • Peng C , QinJ , ZhouBet al. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles . Polym. Chem.4 ( 16 ), 4412 – 4424 ( 2013 ).
  • Sinha R , KimGJ , NieS , ShinDM . Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery . Mol. Cancer Ther.5 ( 8 ), 1909 – 1917 ( 2006 ).
  • Popovtzer R , AgrawalA , KotovNAet al. Targeted gold nanoparticles enable molecular CT imaging of cancer . Nano Lett.8 ( 12 ), 4593 – 4596 ( 2008 ).
  • Eck W , CraigG , SigdelAet al. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue . ACS Nano2 ( 11 ), 2263 – 2272 ( 2008 ).
  • Chanda N , ShuklaR , KattiKV , KannanR . Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging . Nano Lett.9 ( 5 ), 1798 – 1805 ( 2009 ).
  • Aydogan B , LiJ , RajhTet al. AuNP-DG: deoxyglucose-labeled gold nanoparticles as x-ray computed tomography contrast agents for cancer imaging . Mol. Imaging Biol.12 ( 5 ), 463 – 467 ( 2010 ).
  • Li J , ChaudharyA , ChmuraSJet al. A novel functional CT contrast agent for molecular imaging of cancer . Phys. Med. Biol.55 ( 15 ), 4389 – 4397 ( 2010 ).
  • Kim D , JeongYY , JonS . A drug-loaded aptamer–gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer . ACS Nano4 ( 7 ), 3689 – 3696 ( 2010 ).
  • Reuveni T , MotieiM , RommanZ , PopovtzerA , PopovtzerR . Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study . Int. J. Nanomed.6 , 2859 – 2864 ( 2011 ).
  • Chattopadhyay N , CaiZ , KwonYL , LechtmanE , PignolJ-P , ReillyRM . Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to x-radiation . Breast Cancer Res. Treat.137 ( 1 ), 81 – 91 ( 2013 ).
  • Wang H , ZhengL , PengC , ShenM , ShiX , ZhangG . Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma . Biomaterials34 ( 2 ), 470 – 480 ( 2013 ).
  • Yao L , DanielsJ , MoshnikovaAet al. pHLIP peptide targets nanogold particles to tumors . Proc. Natl Acad. Sci. USA110 ( 2 ), 465 – 470 ( 2013 ).
  • Ross RD , RoederRK . Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite . J. Biomed. Mater. Res.99A ( 1 ), 58 – 66 ( 2011 ).
  • Lasagna-Reeves C , Gonzalez-RomeroD , BarriaMAet al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice . Biochem. Biophys. Res. Commun.393 ( 4 ), 649 – 655 ( 2010 ).
  • Pernodet N , FangX , SunYet al. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts . Small2 ( 6 ), 766 – 773 ( 2006 ).
  • Mironava T , HadjiargyrouM , SimonM , JurukovskiV , RafailovichMH . Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time . Nanotoxicology4 ( 1 ), 120 – 137 ( 2010 ).
  • Zhang X-D , WuH-Y , WuDet al. Toxicologic effects of gold nanoparticles in vivo by different administration routes . Int. J. Nanomed.5 , 771 – 781 ( 2010 ).
  • Cho W-S , ChoM , JeongJet al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles . Toxicol. Appl. Pharm.236 ( 1 ), 16 – 24 ( 2009 ).
  • Cho W-S , KimS , HanBS , SonWC , JeongJ . Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles . Toxicol. Lett.191 ( 1 ), 96 – 102 ( 2009 ).
  • Chen Y-S , HungY-C , LiauI , HuangGS . Assessment of the in vivo toxicity of gold nanoparticles . Nanoscale Res. Lett.4 ( 8 ), 858 – 864 ( 2009 ).
  • Daniel M-C , AstrucD . Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology . Chem. Rev.104 ( 1 ), 293 – 346 ( 2004 ).
  • Link S , El-SayedMA . Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles . J. Phys. Chem. B103 ( 21 ), 4212 – 4217 ( 1999 ).
  • Jain PK , LeeKS , El-SayedIH , El-SayedMA . Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine . J. Phys. Chem. B110 ( 14 ), 7238 – 7248 ( 2006 ).
  • Jackson P , PeriasamyS , BansalV , GesoM . Evaluation of the effects of gold nanoparticle shape and size on contrast enhancement in radiological imaging . Australas. Phys. Eng. Sci. Med.34 ( 2 ), 243 – 249 ( 2011 ).
  • Luo T , HuangP , GaoGet al. Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode x-ray CT and NIR fluorescence imaging . Opt. Express19 ( 18 ), 17030 – 17039 ( 2011 ).
  • Lammers T , AimeS , HenninkWE , StormG , KiesslingF . Theranostic nanomedicine . Acc. Chem. Res.44 ( 10 ), 1029 – 1038 ( 2011 ).
  • Liu Y , ShiptonMK , RyanJ , KaufmanED , FranzenS , FeldheimDL . Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide–poly(ethylene glycol) monolayers . Anal. Chem.79 ( 6 ), 2221 – 2229 ( 2007 ).
  • Zhang G , YangZ , LuWet al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice . Biomaterials30 ( 10 ), 1928 – 1936 ( 2009 ).
  • Ghosh SK , PalT . Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications . Chem. Rev.107 ( 11 ), 4797 – 4862 ( 2007 ).
  • Zhou J , RalstonJ , SedevR , BeattieDA . Functionalized gold nanoparticles: synthesis, structure and colloid stability . J. Colloid Interf. Sci.331 ( 2 ), 251 – 262 ( 2009 ).
  • Albanese A , TangPS , ChanWCW . The effect of nanoparticle size, shape, and surface chemistry on biological systems . Annu. Rev. Biomed. Eng.14 ( 1 ), 1 – 16 ( 2012 ).
  • Sonavane G , TomodaK , MakinoK . Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size . Colloids Surf. B Biointerfaces66 ( 2 ), 274 – 280 ( 2008 ).
  • De Jong WH , HagensWI , KrystekP , BurgerMC , SipsAJAM , GeertsmaRE . Particle size-dependent organ distribution of gold nanoparticles after intravenous administration . Biomaterials29 ( 12 ), 1912 – 1919 ( 2008 ).
  • Shilo M , MotieiM , HanaP , PopovtzerR . Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications . Nanoscale6 ( 4 ), 2146 – 2152 ( 2014 ).
  • Olivier J-C . Drug transport to brain with targeted nanoparticles . NeuroRx2 ( 1 ), 108 – 119 ( 2005 ).
  • Niidome T , YamagataM , OkamotoYet al. PEG-modified gold nanorods with a stealth character for in vivo applications . J. Control. Release114 ( 3 ), 343 – 347 ( 2006 ).
  • Chithrani BD , ChanWCW . Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes . Nano Lett.7 ( 6 ), 1542 – 1550 ( 2007 ).
  • Gao H , ShiW , FreudLB . Mechanics of receptor-mediated endocytosis . Proc. Natl Acad. Sci. USA102 ( 27 ), 9469 – 9474 ( 2005 ).
  • Perrault SD , WalkeyC , JenningsT , FischerHC , ChanWCW . Mediating tumor targeting efficiency of nanoparticles through design . Nano Lett.9 ( 5 ), 1909 – 1915 ( 2009 ).
  • Pan Y , NeussS , LeifertAet al. Size-dependent cytotoxicity of gold nanoparticles . Small3 ( 11 ), 1941 – 1949 ( 2007 ).
  • Pan Y , LeifertA , RuauDet al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage . Small5 ( 18 ), 2067 – 2076 ( 2009 ).
  • Tsoli M , KuhnH , BrandauW , EscheH , SchmidG . Cellular uptake and toxicity of Au55 clusters . Small1 ( 8–9 ), 841 – 844 ( 2005 ).
  • Prasad BLV , StoevaSI , SorensenCM , KlabundeKJ . Digestive-ripening agents for gold nanoparticles: alternatives to thiols . Chem. Mater.15 ( 4 ), 935 – 942 ( 2003 ).
  • Giersig M , MulvaneyP . Preparation of ordered colloid monolayers by electrophoretic deposition . Langmuir9 ( 12 ), 3408 – 3413 ( 1993 ).
  • Brust M , WalkerM , BethellD , SchiffrinDJ , WhymanR . Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system . J. Chem. Soc. Chem. Commun.7 , 801 – 802 ( 1994 ).
  • Brust M , FinkJ , BethellD , SchiffrinDJ , KielyC . Synthesis and reactions of functionalised gold nanoparticles . J. Chem. Soc. Chem. Comm.16 , 1655 – 1656 ( 1995 ).
  • Leff DV , BrandtL , HeathJR . Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines . Langmuir12 ( 20 ), 4723 – 4730 ( 1996 ).
  • Aslam M , FuL , SuM , VijayamohananK , DravidVP . Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles . J. Mater. Chem.14 ( 12 ), 17951797 ( 2004 ).
  • Brown LO , HutchisonJE . Formation and electron diffraction studies of ordered 2-D and 3-D superlattices of amine-stabilized gold nanocrystals . J. Phys. Chem. B105 ( 37 ), 8911 – 8916 ( 2001 ).
  • Porter LA , JiD , WestcottSLet al. Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides . Langmuir14 ( 26 ), 7378 – 7386 ( 1998 ).
  • Yonezawa T , YasuiK , KimizukaN . Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer . Langmuir17 ( 2 ), 271 – 273 ( 2001 ).
  • Yao H , MomozawaO , HamataniT , KimuraK . Stepwise size-selective extraction of carboxylate-modified gold nanoparticles from an aqueous suspension into toluene with tetraoctylammonium cations . Chem. Mater.13 ( 12 ), 4692 – 4697 ( 2001 ).
  • Weare WW , ReedSM , WarnerMG , HutchisonJE . Improved synthesis of small (dcore ≈ 1.5 nm) phosphine-stabilized gold nanoparticles . J. Am. Chem. Soc.122 ( 51 ), 12890 – 12891 ( 2000 ).
  • Schmid G . Large clusters and colloids. Metals in the embryonic state . Chem. Rev.92 ( 8 ), 1709 – 1727 ( 1992 ).
  • Selvakannan P , MandalS , PhadtareS , PasrichaR , SastryM . Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible . Langmuir19 ( 8 ), 3545 – 3549 ( 2003 ).
  • Love JC , EstroffLA , KriebelJK , NuzzoRG , WhitesidesGM . Self-assembled monolayers of thiolates on metals as a form of nanotechnology . Chem. Rev.105 ( 4 ), 1103 – 1170 ( 2005 ).
  • Yang M , YauHC , ChanHL . Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface . Langmuir14 ( 21 ), 6121 – 6129 ( 1998 ).
  • Esumi K , SuzukiA , AiharaN , UsuiK , TorigoeK . Preparation of gold colloids with UV irradiation using dendrimers as stabilizer . Langmuir14 ( 12 ), 3157 – 3159 ( 1998 ).
  • Garcia ME , BakerLA , CrooksRM . Preparation and characterization of dendrimer–gold colloid nanocomposites . Anal. Chem.71 ( 1 ), 256 – 258 ( 1999 ).
  • Esumi K , SuzukiA , YamahiraA , TorigoeK . Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver . Langmuir16 ( 6 ), 2604 – 2608 ( 2000 ).
  • Shi X , WangS , SunH , BakerJR . Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles . Soft Matter3 ( 1 ), 71 – 74 ( 2007 ).
  • Shi X , WangS , MeshinchiSet al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging . Small3 ( 7 ), 1245 – 1252 ( 2007 ).
  • Liu H , XuY , WenSet al. Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles . Chem. Eur. J.19 ( 20 ), 6409 – 6416 ( 2013 ).
  • Wang H , ZhengL , PengCet al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles . Biomaterials32 ( 11 ), 2979 – 2988 ( 2011 ).
  • Chen Q , LiK , WenSet al. Targeted CT/MR dual model imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles . Biomaterials34 ( 21 ), 5200 – 5209 ( 2013 ).
  • Tomalia DA . Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft–hard nano-compound synthesis . Soft Matter6 ( 3 ), 456 – 747 ( 2010 ).
  • Sperling RA , Rivera GilP , ZhangF , ZanellaM , ParakWJ . Biological applications of gold nanoparticles . Chem. Soc. Rev.37 ( 9 ), 1896 – 1908 ( 2008 ).
  • Kattumuri V , KattiK , BhaskaranSet al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and x-ray–contrast-imaging studies . Small3 ( 2 ), 333 – 341 ( 2007 ).
  • Ross RD , ColeLE , RoederRK . Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue . J. Nanopart. Res.14 ( 10 ), 1175 ( 2012 ).
  • Cole LE , Vargo-GogolaT , RoederRK . Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced x-ray detection of breast microcalcifications . Biomaterials35 ( 7 ), 2312 – 2321 ( 2014 ).
  • Zhang Z , RossRD , RoederRK . Preparation of functionalized gold nanoparticles as a targeted x-ray contrast agent for damaged bone tissue . Nanoscale2 ( 4 ), 582 – 586 ( 2010 ).
  • Allijn IE , LeongW , TangJet al. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level . ACS Nano7 ( 11 ), 9761 – 9770 ( 2013 ).
  • Choi CHJ , AlabiCA , WebsterP , DavisME . Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles . Proc. Natl Acad. Sci. USA107 ( 3 ), 1235 – 1240 ( 2010 ).
  • Zhou J , BeattieDA , RalstonJ , SedevR . Colloid stability of thymine-functionalized gold nanoparticles . Langmuir23 ( 24 ), 12096 – 12103 ( 2007 ).
  • Otsuka H , NagasakiY , KataokaK . PEGylated nanoparticles for biological and pharmaceutical applications . Adv. Drug Deliv.. Rev.55 ( 3 ), 403 – 419 ( 2003 ).
  • Hayashi K , NakamuraM , MikiHet al. Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core–shell nanoparticles for x-ray computed tomography–fluorescence dual-mode imaging of tumors . Chem. Commun.49 ( 46 ), 5334 ( 2013 ).
  • Kah JCY , WongKY , NeohKGet al. Critical parameters in the PEGylation of gold nanoshells for biomedical applications: an in vitro macrophage study . J. Drug Target.17 ( 3 ), 181 – 193 ( 2009 ).
  • Cho W-S , ChoM , JeongJet al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles . Toxicol. Appl. Pharm.245 ( 1 ), 116 – 123 ( 2010 ).
  • Chattopadhyay N , FongeH , CaiZet al. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo . Mol. Pharm.9 ( 8 ), 2168 – 2179 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.