632
Views
0
CrossRef citations to date
0
Altmetric
Review

Micro-/Nano-Structured Superhydrophobic Surfaces in the Biomedical Field: Part I: Basic Concepts and Biomimetic Approaches

&
Pages 103-119 | Published online: 19 Jan 2015

References

  • Skorb EV , AndreevaDV . Surface nanoarchitecture for bio-applications: self-regulating intelligent interfaces . Adv. Funct. Mater.23 ( 36 ), 4483 – 4506 ( 2013 ).
  • Verplanck N , CoffinierY , ThomyV , BoukherroubR . Wettability switching techniques on superhydrophobic surfaces . Nanoscale Res. Lett.2 ( 12 ), 577 – 596 ( 2007 ).
  • Bellanger H , DarmaninT , Taffin de GivenchyE , GuittardF . Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories . Chem. Rev.114 ( 5 ), 2694 – 2716 ( 2014 ).
  • Yan YY , GaoN , BarthlottW . Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces . Adv. Colloid Interface Sci.169 ( 2 ), 80 – 105 ( 2011 ).
  • Nosonovsky M , BhushanB . Biologically inspired surfaces: broadening the scope of roughness . Adv. Funct. Mater.18 ( 6 ), 843 – 855 ( 2008 ).
  • Gao L , McCarthyTJ . The ’lotus effect’ explained: two reasons why two length scales of topography are important . Langmuir22 ( 7 ), 2966 – 2967 ( 2006 ).
  • Bhushan B , HerEK . Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal . Langmuir26 ( 11 ), 8207 – 8217 ( 2010 ).
  • Yao X , SongY , JiangL . Applications of bio-inspired special wettable surfaces . Adv. Mater.23 ( 6 ), 719 – 734 ( 2011 ).
  • Zhang Y-L , XiaH , KimE , SunH-B . Recent developments in superhydrophobic surfaces with unique structural and functional properties . Soft Matter8 ( 44 ), 11217 – 11231 ( 2012 ).
  • Gao X , YanX , YaoXet al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography . Adv. Mater.19 ( 17 ), 2213 – 2217 ( 2007 ).
  • Xia F , JiangL . Bio-inspired, smart, multiscale interfacial materials . Adv. Mater.20 ( 15 ), 2842 – 2858 ( 2008 ).
  • Ensikat HJ , Ditsche-KuruP , NeinhuisC , BarthlottW . Superhydrophobicity in perfection: the outstanding properties of the lotus leaf . Beilstein J. Nanotechnol.2 , 152 – 161 ( 2011 ).
  • Zheng Y , GaoX , JiangL . Directional adhesion of superhydrophobic butterfly wings . Soft Matter3 ( 2 ), 178 – 182 ( 2007 ).
  • Gao X , JiangL . Biophysics: water-repellent legs of water striders . Nature432 , 36 ( 2004 ).
  • Feng L , LiS , LiYet al. Super-hydrophobic surfaces: from natural to artificial . Adv. Mater.14 ( 24 ), 1857 – 1860 ( 2002 ).
  • Zheng Y , BaiH , HuangZet al. Directional water collection on wetted spider silk . Nature463 , 640 – 643 ( 2010 ).
  • Jung YC , BhushanB . Biomimetic structures for fluid drag reduction in laminar and turbulent flows . J. Phys. Condens. Matter.22 , c035104 ( 2010 ).
  • Wong T-S , KangSH , TangSKYet al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity . Nature477 ( 7365 ), 443 – 447 ( 2011 ).
  • Koch K , BhushanB , BarthlottW . Multifunctional plant surfaces and smart materials . In : Springer Handbook of Nanotechnology.BhushanB ( Ed. ). Springer , Germany , 1399 – 1436 ( 2010 ).
  • Wang J , ChenH , SuiT , LiA , ChenD . Investigation on hydrophobicity of lotus leaf: experiment and theory . Plant Sci.176 ( 5 ), 687 – 695 ( 2009 ).
  • Anastasiadis SH . Development of functional polymer surfaces with controlled wettability . Langmuir29 ( 30 ), 9277 – 9290 ( 2013 ).
  • Feng L , ZhangY , XiJet al. Petal effect: a superhydrophobic state with high adhesive force . Langmuir24 ( 8 ), 4114 – 4119 ( 2008 ).
  • Bhushan B , NosonovskyM . The rose petal effect and the modes of superhydrophobicity . Philos. Trans. A Math. Phys. Eng. Sci.368 ( 1929 ), 4713 – 4728 ( 2010 ).
  • Lima AC , SongW , Blanco-FernandezB , Alvarez-LorenzoC , ManoJF . Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces . Pharm. Res.28 ( 6 ), 1294 – 1305 ( 2011 ).
  • Koch K , BushanB , JungYC , BarthlottW . Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion . Soft Matter5 , 1386 – 1393 ( 2009 ).
  • Zhao Y , QinM , WangA , KimD . Bioinspired superhydrophobic carbonaceous hairy microstructures with strong water adhesion and high gas retaining capability . Adv. Mater.25 ( 33 ), 4561 – 4565 ( 2013 ).
  • Yao X , GaoJ , SongY , JiangL . Superoleophobic surfaces with controllable oil adhesion and their application in oil transportation . Adv. Funct. Mater.21 ( 22 ), 4270 – 4276 ( 2011 ).
  • Zhang G , ZhangX , HuangY , SuZ . A surface exhibiting superoleophobicity both in air and in seawater . ACS Appl. Mater. Interfaces5 ( 13 ), 6400 – 6403 ( 2013 ).
  • Wang X , HuH , YeQ , GaoT , ZhouF , XueQ . Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites . J. Mater. Chem.22 ( 19 ), 9624 – 9631 ( 2012 ).
  • Deng X , MammenL , ButtH-J , VollmerD . Candle soot as a template for a transparent robust superamphiphobic coating . Science335 ( 6064 ), 67 – 70 ( 2012 ).
  • Leng B , ShaoZ , de WithG , MingW . Superoleophobic cotton textiles . Langmuir25 ( 4 ), 2456 – 2460 ( 2009 ).
  • Yang J , ZhangZ , XuX , MenX , ZhuX , ZhouX . Superoleophobic textured aluminum surfaces . New J. Chem.35 ( 11 ), 2422 – 2426 ( 2011 ).
  • Zhang L , ZhangZ , WangP . Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation . NPG Asia Mater.4 ( 2 ), e8 ( 2012 ).
  • Cheng Z , LaiH , DuM , ZhuS , ZhangN , SunK . Super-hydrophobic surface with switchable adhesion responsive to both temperature and pH . Soft Matter8 ( 37 ), 9635 – 9641 ( 2012 ).
  • Sun T , WangG , FengLet al. Reversible switching between superhydrophilicity and superhydrophobicity . Angew. Chem. Int. Ed. Engl.43 ( 3 ), 357 – 360 ( 2004 ).
  • Bixler GD , TheissA , BhushanB , LeeSC . Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings . J. Colloid Interface Sci.419 , 114 – 133 ( 2014 ).
  • Bhushan B . Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity . Beilstein J. Nanotechnol.2 , 66 – 84 ( 2011 ).
  • Bohn HF , FederleW . Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface . Proc. Natl Acad. Sci. USA101 ( 39 ), 14138 – 14143 ( 2004 ).
  • Bauer U , FederleW . The insect-trapping rim of Nepenthes pitchers: surface structure and function . Plant Signal. Behav.4 ( 11 ), 1019 – 1023 ( 2009 ).
  • Liu M , WangS , JiangL . Bioinspired multiscale surfaces with special wettability . MRS Bull.38 ( 05 ), 375 – 382 ( 2013 ).
  • Celia E , DarmaninT , Taffin de GivenchyE , AmigoniS , GuittardF . Recent advances in designing superhydrophobic surfaces . J. Colloid Interface Sci.402 , 1 – 18 ( 2013 ).
  • Xue Z , LiuM , JiangL . Recent developments in polymeric superoleophobic surfaces . J. Polym. Sci. Part B Polym. Phys.50 ( 17 ), 1209 – 1224 ( 2012 ).
  • Tuteja A , ChoiW , MaMet al. Designing superoleophobic surfaces . Science318 ( 5856 ), 1618 – 1622 ( 2007 ).
  • Kota AK , ChoiW , TutejaA . Superomniphobic surfaces: design and durability . MRS Bull.38 ( 05 ), 383 – 390 ( 2013 ).
  • Xin B , HaoJ . Reversibly switchable wettability . Chem. Soc. Rev.39 ( 2 ), 769 – 782 ( 2010 ).
  • Hancock MJ , DemirelMC . Anisotropic wetting on structured surfaces . MRS Bull.38 ( 05 ), 391 – 396 ( 2013 ).
  • Ma M , HillRM . Superhydrophobic surfaces . Curr. Opin. Colloid Interface Sci.11 ( 4 ), 193 – 202 ( 2006 ).
  • Zhang X , ShiF , NiuJ , JiangY , WangZ . Superhydrophobic surfaces: from structural control to functional application . J. Mater. Chem.18 ( 6 ), 621 – 633 ( 2008 ).
  • Qian B , ShenZ . Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates . Langmuir21 ( 20 ), 9007 – 9009 ( 2005 ).
  • Song W , VeigaDD , CustódioCA , ManoJF . Bioinspired degradable substrates with extreme wettability properties . Adv. Mater.21 ( 18 ), 1830 – 1834 ( 2009 ).
  • Huang L , LauSP , YangHY , LeongESP , YuSF , PrawerS . Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film . J. Phys. Chem. B109 ( 16 ), 7746 – 7748 ( 2005 ).
  • Li Y , HuangXJ , HeoSHet al. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays . Langmuir23 ( 4 ), 2169 – 2174 ( 2007 ).
  • Dorrer C , RüheJ . Some thoughts on superhydrophobic wetting . Soft Matter5 ( 1 ), 51 – 61 ( 2009 ).
  • Herbertson DL , EvansCR , ShirtcliffeNJ , McHaleG , NewtonMI . Electrowetting on superhydrophobic SU-8 patterned surfaces . Sensors Actuators A Phys.130–131 , 189 – 193 ( 2006 ).
  • Zhu L , FengY , YeX , ZhouZ . Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures . Sensors Actuators A Phys.130–131 , 595 – 600 ( 2006 ).
  • Fürstner R , BarthlottW , NeinhuisC , WalzelP . Wetting and self-cleaning properties of artificial superhydrophobic surfaces . Langmuir21 ( 3 ), 956 – 961 ( 2005 ).
  • Zhang J , WangA , SeegerS . Nepenthes pitcher inspired anti-wetting silicone nanofilaments coatings: preparation, unique anti-wetting and self-cleaning behaviors . Adv. Funct. Mater.24 ( 8 ), 1074 – 1080 ( 2014 ).
  • Xie Q , XuJ , FengLet al. Facile creation of a super-amphiphobic coating surface with bionic microstructure . Adv. Mater.16 ( 4 ), 302 – 305 ( 2004 ).
  • Kiuru M , AlakoskiE . Low sliding angles in hydrophobic and oleophobic coatings prepared with plasma discharge method . Mater. Lett.58 ( 16 ), 2213 – 2216 ( 2004 ).
  • Nicolas M , GuittardF , GéribaldiS . Synthesis of stable super water- and oil-repellent polythiophene films . Angew. Chem. Int. Ed. Engl.45 ( 14 ), 2251 – 2254 ( 2006 ).
  • Hoefnagels HF , WuD , de WithG , MingW . Biomimetic superhydrophobic and highly oleophobic cotton textiles . Langmuir23 ( 26 ), 13158 – 13163 ( 2007 ).
  • Feng XJ , JiangL . Design and creation of superwetting/antiwetting surfaces . Adv. Mater.18 ( 23 ), 3063 – 3078 ( 2006 ).
  • Darmanin T , GuittardF . Molecular design of conductive polymers to modulate superoleophobic properties . J. Am. Chem. Soc.131 ( 22 ), 7928 – 7933 ( 2009 ).
  • Zimmermann J , RabeM , ArtusGRJ , SeegerS . Patterned superfunctional surfaces based on a silicone nanofilament coating . Soft Matter4 ( 3 ), 450 – 452 ( 2008 ).
  • Liu M , WangS , WeiZ , SongY , JiangL . Bioinspired design of a superoleophobic and low adhesive water/solid interface . Adv. Mater.21 ( 6 ), 665 – 669 ( 2009 ).
  • Epstein AK , WongT-S , BelisleRA , BoggsEM , AizenbergJ . Liquid-infused structured surfaces with exceptional anti-biofouling performance . Proc. Natl. Acad. Sci. USA109 ( 33 ), 13182 – 13187 ( 2012 ).
  • Stone HA . Ice-phobic surfaces that are wet . ACS Nano6 ( 8 ), 6536 – 6540 ( 2012 ).
  • Ma W , HigakiY , OtsukaH , TakaharaA . Perfluoropolyether-infused nano-texture: a versatile approach to omniphobic coatings with low hysteresis and high transparency . Chem. Commun. (Camb.)49 ( 6 ), 597 – 599 ( 2013 ).
  • Manna U , BroderickAH , LynnDM . Chemical patterning and physical refinement of reactive superhydrophobic surfaces . Adv. Mater.24 , 4291 – 4295 ( 2012 ).
  • Arima Y , IwataH . Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers . Biomaterials28 ( 36 ), 3074 – 3082 ( 2007 ).
  • Oliveira SM , SongW , AlvesM . Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation . Soft Matter7 , 8932 – 8941 ( 2011 ).
  • Neto AI , CustódioCA , SongW , ManoJF . High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates . Soft Matter7 ( 9 ), 4147 – 4151 ( 2011 ).
  • Mano JF . Stimuli–responsive polymeric systems for biomedical applications . Adv. Eng. Mater.10 ( 6 ), 515 – 527 ( 2008 ).
  • Custódio CA , ReisRL , ManoJF . Engineering biomolecular microenvironments for cell instructive biomaterials . Adv. Healthc. Mater.3 ( 6 ), 797 – 810 ( 2014 ).
  • Alves NM , PashkulevaI , ReisRL , ManoJF . Controlling cell behavior through the design of polymer surfaces . Small6 ( 20 ), 2208 – 2220 ( 2010 ).
  • Akkas T , CitakC , SirkeciogluA , GünerFS . Which is more effective for protein adsorption: surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly(ethylene glycol) . Polym. Int.62 ( 8 ), 1202 – 1209 ( 2012 ).
  • Roach P , FarrarD , PerryCC . Interpretation of protein adsorption: surface-induced conformational changes . J. Am. Chem. Soc.127 ( 22 ), 8168 – 8173 ( 2005 ).
  • Rabe M , VerdesD , SeegerS . Understanding protein adsorption phenomena at solid surfaces . Adv. Colloid Interface Sci.162 , 87 – 106 ( 2011 ).
  • Anand G , SharmaS , DuttaAK , KumarSK , BelfortG . Conformational transitions of adsorbed proteins on surfaces of varying polarity . Langmuir26 , 10803 – 10811 ( 2010 ).
  • Oliveira SM , AlvesNM , ManoJF . Cell interactions with superhydrophilic and superhydrophobic surfaces . J. Adhes. Sci. Technol.28 ( 8–9 ), 843 – 863 ( 2014 ).
  • Song W , ManoJF . Interactions between cells or proteins and surfaces exhibiting extreme wettabilities . Soft Matter9 ( 11 ), 2985 – 2999 ( 2013 ).
  • Leibner ES , BarnthipN , ChenWet al. Superhydrophobic effect on the adsorption of human serum albumin . Acta Biomater.5 ( 5 ), 1389 – 1398 ( 2009 ).
  • Huang Q , LinL , YangY , HuR , VoglerEA , LinC . Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces . Biomaterials33 ( 33 ), 8213 – 8220 ( 2012 ).
  • Ballester-Beltrán J , RicoP , MoratalD , SongW , ManoJF , Salmerón-SánchezM . Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface . Soft Matter7 ( 22 ), 10803 – 10811 ( 2011 ).
  • Cantini M , SousaM , MoratalD , ManoJF , Salmerón-SánchezM . Non-monotonic cell differentiation pattern on extreme wettability gradients . Biomater. Sci.1 ( 2 ), 202 – 212 ( 2013 ).
  • Lourenço BN , MarchioliG , SongWet al. Wettability influences cell behavior on superhydrophobic surfaces with different topographies . Biointerphases7 ( 1–4 ), 46 ( 2012 ).
  • Gittens RA , McLachlanT , Olivares-NavarreteRet al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation . Biomaterials32 ( 13 ), 3395 – 3403 ( 2011 ).
  • Alves NM , ShiJ , OramasE , SantosJL , TomásH , ManoJF . Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation . J. Biomed. Mater. Res. A91 ( 2 ), 480 – 488 ( 2009 ).
  • Limongi T , CescaF , GentileFet al. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks . Small9 ( 3 ), 402 – 412 ( 2013 ).
  • Hersel U , DahmenC , KesslerH . RGD modified polymers: biomaterials for stimulated cell adhesion and beyond . Biomaterials24 ( 24 ), 4385 – 4415 ( 2003 ).
  • Stevens MM , GeorgeJH . Exploring and engineering the cell surface interface . Science310 ( 5751 ), 1135 – 1138 ( 2005 ).
  • Bettinger CJ , LangerR , BorensteinJT . Engineering substrate topography at the micro- and nanoscale to control cell function . Angew. Chem. Int. Ed. Engl.48 ( 30 ), 5406 – 5415 ( 2009 ).
  • Jayaraman M , MeyerU , BühnerM , JoosU , WiesmannH-P . Influence of titanium surfaces on attachment of osteoblast-like cells in vitro . Biomaterials25 ( 4 ), 625 – 631 ( 2004 ).
  • Luz GM , ManoJF . Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials . Compos. Sci. Tecnol.70 ( 13 ), 1777 – 1788 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.