607
Views
0
CrossRef citations to date
0
Altmetric
Review

Micro/Nano-Structured Superhydrophobic Surfaces in the Biomedical Field: Part II: Applications Overview

&
Pages 271-297 | Published online: 20 Jan 2015

References

  • Wilson CJ , CleggRE , LeavesleyDI , PearcyMJ . Mediation of biomaterial–cell interactions by adsorbed proteins: a review . Tissue Eng.11 ( 1–2 ), 1 – 18 ( 2005 ).
  • Alves NM , PashkulevaI , ReisRL , ManoJF . Controlling cell behavior through the design of polymer surfaces . Small6 ( 20 ), 2208 – 2220 ( 2010 ).
  • Koegler P , ClaytonA , ThissenH , SantosGNC , KingshottP . The influence of nanostructured materials on biointerfacial interactions . Adv. Drug Deliv. Rev.64 ( 15 ), 1820 – 1839 ( 2012 ).
  • Oliveira SM , AlvesNM , ManoJF . Cell interactions with superhydrophilic and superhydrophobic surfaces . J. Adhes. Sci. Technol.28 ( 8–9 ), 843 – 863 ( 2014 ).
  • Song W , ManoJF . Interactions between cells or proteins and surfaces exhibiting extreme wettabilities . Soft Matter9 ( 11 ), 2985 – 2999 ( 2013 ).
  • Lima AC , ManoJF . Micro/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches . Nanomedicine (Lond.)10 ( 1 ), 103 – 119 ( 2015 ).
  • Liu K , YaoX , JiangL . Recent developments in bio-inspired special wettability . Chem. Soc. Rev.39 , 3240 – 3255 ( 2010 ).
  • Katsikogianni M , MissirlisYF . Concise review of mechanics of bacterial adhesion to biomaterials of techniques used in estimating bacteria–material interactions , Eur. Cell. Mater.8 , 37 – 57 ( 2004 ).
  • Paul NE , SkazikC , HardwardtMet al. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface . Biomaterials29 ( 30 ), 4056 – 4064 ( 2008 ).
  • Cao H , MchughK , ChewSY , AndersonJM . The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction . J. Biomed. Mater. Res. A93A ( 3 ), 1151 – 1159 ( 2010 ).
  • Shang HM , WangY , TakahashiK , CaoGZ , LiD , XiaYN . Nanostructured superhydrophobic surfaces . J. Mater. Sci.40 ( 13 ), 3587 – 3591 ( 2005 ).
  • Yohe ST , ColsonYL , GrinstaffMW . Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates . J. Am. Chem. Soc.134 ( 4 ), 2016 – 2019 ( 2012 ).
  • Lima AC , BatistaP , ValenteTAM , SilvaAS , CorreiaIJ , ManoJF . Novel methodology based on biomimetic superhydrophobic substrates to immobilize cells and proteins in hydrogel spheres for applications in bone regeneration . Tissue Eng.19 ( 9–19 ), 1175 – 1187 ( 2013 ).
  • Lima AC , CorreiaCR , OliveiraMB , ManoJF . Sequential ionic and thermogelation of chitosan spherical hydrogels prepared using superhydrophobic surfaces to immobilize cells and drugs . J. Bioact. Compat. Polym.29 ( 1 ), 50 – 65 ( 2013 ).
  • Lima AC , ManoJF , ConcheiroA . Alvarez-LorenzoC . Fast and mild strategy, using superhydrophobic surfaces, to produce collagen/platelet lysates gel beads for skin regeneration . Stem Cell Rev. doi:10.1007/s12015-014-9548-6 ( 2014 ) ( Epub ahead of print ).
  • Lima AC , SongW , Blanco-FernandezB , Alvarez-LorenzoC , ManoJF . Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces . Pharm. Res.28 ( 6 ), 1294 – 1305 ( 2011 ).
  • Lima AC , PugaAM , ManoJF , ConcheiroA , Alvarez-LorenzoC . Free and copolymerized g-cyclodextrins regulate the performance of dexamethasone-loaded dextran microspheres for bone regeneration . J. Mater. Chem. B2 , 4943 – 4956 ( 2014 ).
  • Oliveira MB , SongW , MartínLet al. Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications . Soft Matter7 ( 14 ), 6426 – 6434 ( 2011 ).
  • Costa AMS , Alatorre-MedaM , OliveiraNM , ManoJF . Biocompatible polymeric microparticles produced by a simple biomimetic approach . Langmuir30 ( 16 ), 4535 – 4539 ( 2014 ).
  • Song W , OliveiraMB , SherP , GilS , NóbregaJM , ManoJF . Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications . Biomed. Mater.8 ( 4 ), 045008 ( 2013 ).
  • Luz GM , ManoJF . A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres . Nanoscale4 ( 20 ), 6293 – 6297 ( 2012 ).
  • Hu L , ChenZ , SerpeMJ . Interface assisted synthesis of complex hydrogel particles . Soft Matter8 ( 39 ), 10095 – 10099 ( 2012 ).
  • Lima AC , CustódioCA , Alvarez-LorenzoC , ManoJF . Biomimetic methodology to produce polymeric multilayered particles for biotechnological and biomedical applications . Small9 ( 15 ), 2487 – 2492 ( 2013 ).
  • Puga AM , LimaAC , ManoJF , ConcheiroA , Alvarez-LorenzoC . Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation . Carbohydr. Polym.98 ( 1 ), 331 – 340 ( 2013 ).
  • Li L , TianJ , LiM , ShenW . Superhydrophobic surface supported bioassay – an application in blood typing . Colloids Surf. B Biointerfaces106 , 176 – 180 ( 2013 ).
  • Luz GM , LeiteAJ , NetoAI , SongW , ManoJF . Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles . Mater. Lett.65 ( 2 ), 296 – 299 ( 2011 ).
  • Neto AI , CustódioCA , SongW , ManoJF . High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates . Soft Matter7 ( 9 ), 4147 – 4151 ( 2011 ).
  • Salgado CL , OliveiraMB , ManoJF . Combinatorial cell–3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates . Integr. Biol.4 , 318 – 327 ( 2012 ).
  • Oliveira MB , SalgadoCL , SongW , ManoJF . Combinatorial on-chip study of miniaturized 3D porous scaffolds using a patterned superhydrophobic platform . Small9 ( 5 ), 768 – 778 ( 2013 ).
  • Oliveira MB , LuzGM , ManoJF . A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization . J. Mater. Chem. B2 , 5627 – 5638 ( 2014 ).
  • Oliveira MB , RibeiroMP , MiguelSPet al. In vivo high-content evaluation of three-dimensional scaffolds biocompatibility . Tissue Eng. Part C Methods20 ( 11 ), 851 – 864 ( 2014 ).
  • Ishizaki T , SaitoN , TakaiO . Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry . Langmuir26 ( 11 ), 8147 – 8154 ( 2010 ).
  • Efremov AN , StanganelloE , WelleA , ScholppS , LevkinPA . Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell–cell communication . Biomaterials34 ( 7 ), 1757 – 1763 ( 2013 ).
  • Oliveira MB , ManoJF . On-chip assessment of the protein-release profile from 3D hydrogel arrays . Anal. Chem.85 ( 4 ), 2391 – 2396 ( 2013 ).
  • Neto AI , CorreiaCR , CustódioCA , ManoJF . Biomimetic miniaturized platform able to sustain arrays of liquid droplets for high-throughput combinatorial tests . Adv. Funct. Mater. doi:10.1002/adfm.201400503 ( 2014 ) ( Epub ahead of print ).
  • Oliveira MB , NetoAI , CorreiaCR , Rial-HermidaMI , Alvarez-LorenzoC , ManoJF . Superhydrophobic chips for cell spheroids high-throughput generation and drug screening . ACS Appl. Mater. Interfaces6 ( 12 ), 9488 – 9495 ( 2014 ).
  • Shateri Khalil-Abad M , YazdanshenasME . Superhydrophobic antibacterial cotton textiles . J. Colloid Interface Sci.351 ( 1 ), 293 – 298 ( 2010 ).
  • Vilcnik A , JermanI , Surca VukAet al. Structural properties and antibacterial effects of hydrophobic and oleophobic sol–gel coatings for cotton fabrics . Langmuir25 ( 10 ), 5869 – 5880 ( 2009 ).
  • Khorasani MT , MirzadehH . In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials . J. Appl. Polym. Sci.9 ( 3 ), 2042 – 2047 ( 2004 ).
  • Zhou M , YangJH , YeXet al. Blood platelet’s behavior on nanostructured superhydrophobic surface . J. Nano Res.2 , 129 – 136 ( 2008 ).
  • Sun T , TanH , HanD , FuQ , JiangL . No platelet can adhere – largely improved blood compatibility on nanostructured superhydrophobic surfaces . Small1 ( 10 ), 959 – 963 ( 2005 ).
  • Hou X , WangX , ZhuQet al. Preparation of polypropylene superhydrophobic surface and its blood compatibility . Colloids Surf. B Biointerfaces80 ( 2 ), 247 – 250 ( 2010 ).
  • Schakenraad JM , StokroosI , BartelsH , BusscherHJ . Patency of small caliber, superhydrophobic ePTFE vascular grafts, a pilot study in the rabbit carotid artery . Cells Mater.2 , 193 – 199 ( 1992 ).
  • Toes GJ , van MuiswinkelKW , van OeverenWet al. Superhydrophobic modification fails to improve the performance of small diameter expanded polytetrafluoroethylene vascular grafts . Biomaterials23 ( 1 ), 255 – 262 ( 2002 ).
  • Yohe ST , HerreraVLM , ColsonYL , GrinstaffMW . 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells . J. Control. Release162 ( 1 ), 92 – 101 ( 2012 ).
  • Zhang L , WuJ , WangY , LongY , ZhaoN , XuJ . Combination of bioinspiration: a general route to superhydrophobic particles . J. Am. Chem. Soc.134 , 9879 – 9881 ( 2012 ).
  • Oliveira MB , ManoJF . Polymer-based microparticles in tissue engineering and regenerative medicine . Biotechnol. Prog.27 ( 4 ), 897 – 812 ( 2011 ).
  • Correia CR , ReisRL , ManoJF . Multilayered hierarchical capsules providing cell adhesion sites . Biomacromolecules14 ( 3 ), 743 – 751 ( 2013 ).
  • Orive G , HernándezRM , GascónARet al. Cell encapsulation: promise and progress . Nat. Med.9 ( 1 ), 104 – 107 ( 2003 ).
  • Custódio CA , SantoVE , OliveiraMB , GomesME , ReisRL , ManoJF . Functionalized microparticles producing scaffolds in combination with cells . Adv. Funct. Mater.24 ( 10 ), 1391 – 1400 ( 2014 ).
  • Song W , LimaAC , ManoJF . Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates . Soft Matter6 ( 23 ), 5868 – 5871 ( 2010 ).
  • Lima AC , SherP , ManoJF . Production methodologies of polymeric and hydrogel particles for drug delivery applications . Expert Opin. Drug Deliv.9 ( 2 ), 231 – 248 ( 2012 ).
  • Gong JP . Why are double network hydrogels so tough?Soft Matter6 ( 12 ), 2583 – 2590 ( 2010 ).
  • Cruz DM , IviricoJL , GomesMMet al. Chitosan microparticles as injectable scaffolds for tissue engineering . J. Tissue Eng. Regen. Med.2 ( 6 ), 378 – 380 ( 2008 ).
  • Luz GM , ManoJF . Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications . Nanotechnology22 ( 49 ), 494014 ( 2011 ).
  • Shao F , NgTW , LiewOW , FuJ , SridharT . Evaporative preconcentration and cryopreservation of fluorescent analytes using superhydrophobic surfaces . Soft Matter8 ( 13 ), 3563 – 3569 ( 2012 ).
  • Vuong T , QiA , MuradogluMet al. Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization . Soft Matter9 ( 13 ), 3631 – 3639 ( 2013 ).
  • Rial-Hermida MI , OliveiraNM , ConcheiroA , Alvarez-LorenzoC , ManoJF . Bioinspired superamphiphobic surfaces as a tool for polymer- and solvent-independent preparation of drug-loaded spherical particles . Acta Biomater.10 ( 10 ), 4314 – 4322 ( 2014 ).
  • Lindström S , Andersson-SvahnH . Miniaturization of biological assays – overview on microwell devices for single-cell analyses . Biochim. Biophys. Acta1810 ( 3 ), 308 – 316 ( 2011 ).
  • Oliveira NM , CorreiaCR , ReisRL , ManoJF . Liquid marbles for high-throughput biological screening of anchorage-dependent cells . Adv. Health. Mater. doi:10.1002/adhm.201400310 ( 2014 ) ( Epub ahead of print ).
  • Alves NM , LeonorIB , AzevedoHS , ReisRL , ManoJF . Designing biomaterials based on biomineralization of bone . J. Mater. Chem.20 ( 15 ), 2911 – 2921 ( 2010 ).
  • Wright D , RajalingamB , SelvarasahS , DokmeciMR , KhademhosseiniA . Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils . Lab Chip7 ( 10 ), 1272 – 1279 ( 2007 ).
  • Webster A , GreenmanJ , HaswellSJ . Development of microfluidic devices for biomedical and clinical application . J. Chem. Technol. Biotechnol.86 ( 1 ), 10 – 17 ( 2011 ).
  • Gao D , LiuH , JiangY , LinJ-M . Recent developments in microfluidic devices for in vitro cell culture for cell-biology research . TrAC Trends Anal. Chem.35 , 150 – 164 ( 2012 ).
  • Lee WG , KimY-G , ChungBG , DemirciU , KhademhosseiniA . Nano/microfluidics for diagnosis of infectious diseases in developing countries . Adv. Drug Deliv. Rev.62 ( 4–5 ), 449 – 457 ( 2010 ).
  • Serra CA , ChangZ . Microfluidic-assisted synthesis of polymer particles . Chem. Eng. Technol.31 ( 8 ), 1099 – 1115 ( 2008 ).
  • Whitesides GM . The origins and the future of microfluidics . Nature442 ( 7101 ), 368 – 373 ( 2006 ).
  • Choi C-H , KimC-J . Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface . Phys. Rev. Lett.96 ( 6 ), 066001 ( 2006 ).
  • Lu C , XieY , YangYet al. New valve and bonding designs for microfluidic biochips containing proteins . Anal. Chem.79 ( 3 ), 994 – 1001 ( 2007 ).
  • Oliveira NM , NetoAI , SongW , ManoJF . Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface . Appl. Phys. Express3 ( 8 ), 085205 ( 2010 ).
  • Elsharkawy M , SchutziusTM , MegaridisCM . Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices . Lab Chip14 ( 6 ), 1168 – 1175 ( 2014 ).
  • Fang G , LiW , WangX , QiaoG . Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability . Langmuir24 ( 20 ), 11651 – 11660 ( 2008 ).
  • Balu B , BerryAD , HessDW , BreedveldV . Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications . Lab Chip9 ( 21 ), 3066 – 3075 ( 2009 ).
  • Martinez AW , PhillipsST , ButteMJ , WhitesidesGM . Patterned paper as a platform for inexpensive, low-volume, portable bioassays . Angew. Chem. Int. Ed. Engl.46 ( 8 ), 1318 – 1320 ( 2007 ).
  • Vella SJ , BeattieP , CademartiriRet al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick . Anal. Chem.84 ( 6 ), 2883 – 2891 ( 2012 ).
  • Sousa MP , ManoJF . Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing . Cellulose20 ( 5 ), 2185 – 2190 ( 2013 ).
  • Obeso CG , SousaMP , SongW , Rodriguez-PérezMA , BushanB , ManoJF . Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates . Colloids Surf. A Physicochem. Eng. Aspects416 , 51 – 55 ( 2013 ).
  • Sousa MP , ManoJF . Superhydrophobic paper in the development of disposable labware and lab-on-paper devices . ACS Appl. Mater. Interfaces5 ( 9 ), 3731 – 3737 ( 2013 ).
  • Draper MC , NiuX , ChoS , JamesDI , EdelJB . Compartmentalization of electrophoretically separated analytes in a multiphase microfluidic platform . Anal. Chem.84 ( 13 ), 5801 – 5808 ( 2012 ).
  • Hancock MJ , HeJ , ManoJF , KhademhosseiniA . Surface-tension-driven gradient generation in a fluid stripe for bench-top and microwell applications . Small7 ( 7 ), 892 – 901 ( 2011 ).
  • Oliveira NM , ReisRL , ManoJF . Superhydrophobic surfaces engineered using diatomaceous earth . ACS Appl. Mater. Interfaces5 ( 10 ), 4202 – 4208 ( 2013 ).
  • Piraino F , Camci-UnalG , HancockMJ , RasponiM , KhademhosseiniA . Multi-gradient hydrogels produced layer by layer with capillary flow and crosslinking in open microchannels . Lab Chip12 ( 3 ), 659 – 661 ( 2012 ).
  • Lee HY , ParkHK , LeeYM , KimK , ParkSB . A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications . Chem. Commun. (Camb.)28 , 2959 – 2961 ( 2007 ).
  • Dastjerdi R , MontazerM . A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties . Colloids Surf. B Biointerfaces79 ( 1 ), 5 – 18 ( 2010 ).
  • Xue C-H , ChenJ , YinW , JiaS-T , MaJ-Z . Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles . Appl. Surf. Sci.258 ( 7 ), 2468 – 2472 ( 2012 ).
  • Tomšič B , SimončičB , OrelBet al. Sol–gel coating of cellulose fibres with antimicrobial and repellent properties . J. Sol–Gel Sci. Technol.47 ( 1 ), 44 – 57 ( 2008 ).
  • Smith DM , SnowDE , ReesEet al. Evaluation of the bacterial diversity of pressure ulcers using bTEFAP pyrosequencing . BMC Med. Genomics3 , 41 ( 2010 ).
  • Deutsch M , MeinhartJ , FischleinT , PreissP , ZillaP . Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience . Surgery126 ( 5 ), 847 – 855 ( 1999 ).
  • Esquivel CO , BlaisdellFW . Why small caliber vascular grafts fail: a review of clinical and experimental experience and the significance of the interaction of blood at the interface . J. Surg. Res.41 ( 1 ), 1 – 15 ( 1986 ).
  • Herring M , SmithJ , DalsingMet al. Endothelial seeding of polytetrafluoroethylene femoral popliteal bypasses: the failure of low density seeding to improve patency . J. Vasc. Surg.20 , 650 – 655 ( 1994 ).
  • Ariyoshi H , OkuyamaM , OkaharaKet al. Expanded polytetrafluoroethylene (ePTFE) vascular graft loses its thrombogenicity six months after implantation . Thromb. Res.88 ( 5 ), 427 – 433 ( 1997 ).
  • Busscher HJ , StokroosI , GolverdingenJG , SchakenraadJM . Adhesion and spreading oh human fibroblasts on superhydrophobic FEP–Teflon . Cells Mater.1 , 243 – 249 ( 1991 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.