24,170
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanobody-Based Cancer Therapy of Solid Tumors

, , &
Pages 161-174 | Published online: 19 Jan 2015

References

  • Oldham RK , DillmanRO . Monoclonal antibodies in cancer therapy: 25 years of progress . J. Clin. Oncol.26 ( 11 ), 1774 – 1777 ( 2008 ).
  • Oliveira S , HeukersR , SornkomJ , KokRJ , van Bergen en HenegouwenPM . Targeting tumors with nanobodies for cancer imaging and therapy . J. Control. Release172 ( 3 ), 607 – 617 ( 2013 ).
  • Senter PD . Potent antibody drug conjugates for cancer therapy . Curr. Opin. Chem. Biol.13 ( 3 ), 235 – 244 ( 2009 ).
  • Sarma VR , SilvertonEW , DaviesDR , TerryWD . The three-dimensional structure at 6 A resolution of a human gamma Gl immunoglobulin molecule . J. Biol. Chem.246 ( 11 ), 3753 – 3759 ( 1971 ).
  • Siontorou CG . Nanobodies as novel agents for disease diagnosis and therapy . Int. J. Nanomedicine8 , 4215 – 4227 ( 2013 ).
  • Baker JH , LindquistKE , HuxhamLA , KyleAH , SyJT , MinchintonAI . Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts . Clin. Cancer Res.14 ( 7 ), 2171 – 2179 ( 2008 ).
  • Rudnick SI , AdamsGP . Affinity and avidity in antibody-based tumor targeting . Cancer Biother. Radiopharm.24 ( 2 ), 155 – 161 ( 2009 ).
  • Bell A , WangZJ , Arbabi-GhahroudiMet al. Differential tumor-targeting abilities of three single-domain antibody formats . Cancer Lett.289 ( 1 ), 81 – 90 ( 2010 ).
  • Hamers-Casterman C , AtarhouchT , MuyldermansSet al. Naturally occurring antibodies devoid of light chains . Nature363 ( 6428 ), 446 – 448 ( 1993 ).
  • Padlan EA . Anatomy of the antibody molecule . Mol. Immunol.31 ( 3 ), 169 – 217 ( 1994 ).
  • Muyldermans S . Nanobodies: natural single-domain antibodies . Annu. Rev. Biochem.82 , 775 – 797 ( 2013 ).
  • Oliveira S , van DongenGA , Stigter-van WalsumMet al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor Nanobody . Mol. Imaging11 ( 1 ), 33 – 46 ( 2012 ).
  • Dumoulin M , ConrathK , Van MeirhaegheAet al. Single-domain antibody fragments with high conformational stability . Protein Sci.11 ( 3 ), 500 – 515 ( 2002 ).
  • van der Linden RH , FrenkenLG , de GeusBet al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies . Biochim. Biophys. Acta1431 ( 1 ), 37 – 46 ( 1999 ).
  • Muyldermans S , AtarhouchT , SaldanhaJ , BarbosaJA , HamersR . Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains . Protein Eng.7 ( 9 ), 1129 – 1135 ( 1994 ).
  • Ablynx homepage . www.ablynx.com
  • Vincke C , LorisR , SaerensD , Martinez-RodriguezS , MuyldermansS , ConrathK . General strategy to humanize a camelid single-domain antibody and identification of a universal humanized Nanobody scaffold . J. Biol. Chem.284 ( 5 ), 3273 – 3284 ( 2009 ).
  • Kijanka M , WarndersFJ , El KhattabiMet al. Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery . Eur. J. Nucl. Med. Mol. Imaging40 ( 11 ), 1718 – 1729 ( 2013 ).
  • Vosjan MJ , VercammenJ , KolkmanJA , Stigter-van WalsumM , RevetsH , van DongenGA . Nanobodies targeting the hepatocyte growth factor: potential new drugs for molecular cancer therapy . Mol. Cancer Ther.11 ( 4 ), 1017 – 1025 ( 2012 ).
  • Roovers RC , LaeremansT , HuangLet al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR nanobodies . Cancer Immunol. Immunother.56 ( 3 ), 303 – 317 ( 2007 ).
  • Pardon E , LaeremansT , TriestSet al. A general protocol for the generation of nanobodies for structural biology . Nat. Protoc.9 ( 3 ), 674 – 693 ( 2014 ).
  • Vaneycken I , DevoogdtN , Van GassenNet al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer . FASEB J.25 ( 7 ), 2433 – 2446 ( 2011 ).
  • Van de Broek B , DevoogdtN , D’HollanderAet al. Specific cell targeting with Nanobody conjugated branched gold nanoparticles for photothermal therapy . ACS Nano5 ( 6 ), 4319 – 4328 ( 2011 ).
  • Holmes K , RobertsOL , ThomasAM , CrossMJ . Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition . Cell. Signal.19 ( 10 ), 2003 – 2012 ( 2007 ).
  • Olsson AK , DimbergA , KreugerJ , Claesson-WelshL . VEGF receptor signalling – in control of vascular function . Nat. Rev. Mol. Cell Biol.7 ( 5 ), 359 – 371 ( 2006 ).
  • Behdani M , ZeinaliS , KhanahmadHet al. Generation and characterization of a functional Nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor . Mol. Immunol.50 ( 1–2 ), 35 – 41 ( 2012 ).
  • Bottaro DP , RubinJS , FalettoDLet al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product . Science251 ( 4995 ), 802 – 804 ( 1991 ).
  • Gherardi E , BirchmeierW , BirchmeierC , Vande WoudeG . Targeting MET in cancer: rationale and progress . Nat. Rev. Cancer12 ( 2 ), 89 – 103 ( 2012 ).
  • Schmidt Slordahl T , DenayerT , Helen MoenSet al. Anti-c-MET Nanobody® – a new potential drug in multiple myeloma treatment . Eur. J. Haematol.91 ( 5 ), 399 – 410 ( 2013 ).
  • Heukers R , AltintasI , RaghoenathSet al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles . Biomaterials35 ( 1 ), 601 – 610 ( 2014 ).
  • Rajagopal S , KimJ , AhnSet al. Beta-arrestin- but not G protein-mediated signaling by the ’decoy’ receptor CXCR7 . Proc. Natl Acad. Sci. USA107 ( 2 ), 628 – 632 ( 2010 ).
  • Miao Z , LukerKE , SummersBCet al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature . Proc. Natl Acad. Sci. USA104 ( 40 ), 15735 – 15740 ( 2007 ).
  • Sadeqzadeh E , RahbarizadehF , AhmadvandD , RasaeeMJ , ParhamifarL , MoghimiSM . Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells . J. Control. Release156 ( 1 ), 85 – 91 ( 2011 ).
  • Cortez-Retamozo V , BackmannN , SenterPDet al. Efficient cancer therapy with a nanobody-based conjugate . Cancer Res.64 ( 8 ), 2853 – 2857 ( 2004 ).
  • Blanchetot C , VerzijlD , Mujic-DelicAet al. Neutralizing nanobodies targeting diverse chemokines effectively inhibit chemokine function . J. Biol. Chem.288 ( 35 ), 25173 – 25182 ( 2013 ).
  • Roovers RC , VosjanMJ , LaeremansTet al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth . Int. J. Cancer129 ( 8 ), 2013 – 2024 ( 2011 ).
  • Omidfar K , Amjad ZanjaniFS , HaghAG , AziziMD , RasouliSJ , KashanianS . Efficient growth inhibition of EGFR over-expressing tumor cells by an anti-EGFR nanobody . Mol. Biol. Rep.40 ( 12 ), 6737 – 6745 ( 2013 ).
  • Talelli M , RijckenCJ , OliveiraSet al. Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting . J. Control. Release151 ( 2 ), 183 – 192 ( 2011 ).
  • Oliveira S , SchiffelersRM , van der VeekenJet al. Downregulation of EGFR by a novel multivalent nanobody–liposome platform . J. Control. Release145 ( 2 ), 165 – 175 ( 2010 ).
  • van der Meel R , OliveiraS , AltintasIet al. Tumor-targeted Nanobullets: anti-EGFR nanobody–liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment . J. Control. Release159 ( 2 ), 281 – 289 ( 2012 ).
  • Heukers R , van Bergen en HenegouwenPM , OliveiraS . Nanobody-photosensitizer conjugates for targeted photodynamic therapy . Nanomedicine10 ( 7 ), 1441 – 1451 ( 2014 ).
  • van der Meel R , OliveiraS , AltintasIet al. Inhibition of tumor growth by targeted anti-EGFR/IGF-1R nanobullets depends on efficient blocking of cell survival pathways . Mol. Pharm.10 ( 10 ), 3717 – 3727 ( 2013 ).
  • Talelli M , OliveiraS , RijckenCJet al. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy . Biomaterials34 ( 4 ), 1255 – 1260 ( 2013 ).
  • Altintas I , HeukersR , van der MeelRet al. Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells . J. Control. Release165 ( 2 ), 110 – 118 ( 2013 ).
  • D’Huyvetter M , VinckeC , XavierCet al. Targeted radionuclide therapy with a 177Lu-labeled anti-HER2 nanobody . Theranostics4 ( 7 ), 708 – 720 ( 2014 ).
  • Behdani M , ZeinaliS , KarimipourMet al. Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth . N. Biotechnol.30 ( 2 ), 205 – 209 ( 2013 ).
  • Maussang D , Mujic-DelicA , DescampsFJet al. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo . J. Biol. Chem.288 ( 41 ), 29562 – 29572 ( 2013 ).
  • Araste F , EbrahimizadehW , RasooliI , RajabibazlM , Mousavi GargariSL . A novel VHH nanobody against the active site (the CA domain) of tumor-associated, carbonic anhydrase isoform IX and its usefulness for cancer diagnosis . Biotechnol. Lett.36 ( 1 ), 21 – 28 ( 2014 ).
  • Altintas I , HeukersR , van der MeelRet al. Nanobody–albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells . J. Control. Release165 ( 2 ), 110 – 118 ( 2013 ).
  • Bannas P , WellL , LenzAet al. In vivo near-infrared fluorescence targeting of T cells: comparison of nanobodies and conventional monoclonal antibodies . Contrast Media Mol. Imaging9 ( 2 ), 135 – 142 ( 2014 ).
  • Heukers R , VermeulenJF , FereidouniFet al. Endocytosis of EGFR requires its kinase activity and N-terminal transmembrane dimerization motif . J. Cell. Sci.126 ( Pt 21 ), 4900 – 4912 ( 2013 ).
  • Sapra P , AllenTM . Ligand-targeted liposomal anticancer drugs . Prog. Lipid Res.42 ( 5 ), 439 – 462 ( 2003 ).
  • Nichols JW , BaeYH . Odyssey of a cancer nanoparticle: from injection site to site of action . Nano Today7 ( 6 ), 606 – 618 ( 2012 ).
  • Hussack G , HiramaT , DingW , MackenzieR , TanhaJ . Engineered single-domain antibodies with high protease resistance and thermal stability . PLoS ONE6 ( 11 ), e28218 ( 2011 ).
  • Longmire M , ChoykePL , KobayashiH . Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats . Nanomedicine (Lond.)3 ( 5 ), 703 – 717 ( 2008 ).
  • Vaneycken I , GovaertJ , VinckeCet al. In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT . J. Nucl. Med.51 ( 7 ), 1099 – 1106 ( 2010 ).
  • Vegt E , MelisM , EekAet al. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice . Eur. J. Nucl. Med. Mol. Imaging38 ( 4 ), 623 – 632 ( 2011 ).
  • Kobayashi H , LeN , KimISet al. The pharmacokinetic characteristics of glycolated humanized anti-Tac Fabs are determined by their isoelectric points . Cancer Res.59 ( 2 ), 422 – 430 ( 1999 ).
  • Choi HS , LiuW , MisraPet al. Renal clearance of quantum dots . Nat. Biotechnol.25 ( 10 ), 1165 – 1170 ( 2007 ).
  • Li T , BourgeoisJP , CelliSet al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging . FASEB J.26 ( 10 ), 3969 – 3979 ( 2012 ).
  • Muyldermans S , BaralTN , RetamozzoVCet al. Camelid immunoglobulins and nanobody technology . Vet. Immunol. Immunopathol.128 ( 1–3 ), 178 – 183 ( 2009 ).
  • Cortez-Retamozo V , LauwereysM , Hassanzadeh GhGet al. Efficient tumor targeting by single-domain antibody fragments of camels . Int. J. Cancer98 ( 3 ), 456 – 462 ( 2002 ).
  • Gunther R , ChelstromLM , WendorfHRet al. Toxicity profile of the investigational new biotherapeutic agent, B43 (anti-CD19)-pokeweed antiviral protein immunotoxin . Leuk. Lymphoma22 ( 1–2 ), 61 – 70 , follow.186, color plate II–V ( 1996 ).
  • Uckun FM , YanishevskiY , TumerNet al. Pharmacokinetic features, immunogenicity, and toxicity of B43(anti-CD19)-pokeweed antiviral protein immunotoxin in cynomolgus monkeys . Clin. Cancer Res.3 ( 3 ), 325 – 337 ( 1997 ).
  • Gainkam LO , CaveliersV , DevoogdtNet al. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice . Contrast Media Mol. Imaging6 ( 2 ), 85 – 92 ( 2011 ).
  • Huang L , GainkamLO , CaveliersVet al. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression . Mol. Imaging Biol.10 ( 3 ), 167 – 175 ( 2008 ).
  • Gainkam LO , HuangL , CaveliersVet al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT . J. Nucl. Med.49 ( 5 ), 788 – 795 ( 2008 ).
  • Tijink BM , LaeremansT , BuddeMet al. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology . Mol. Cancer Ther.7 ( 8 ), 2288 – 2297 ( 2008 ).
  • Newkirk MM , NovickJ , StevensonMM , FournierMJ , ApostolakosP . Differential clearance of glycoforms of IgG in normal and autoimmune-prone mice . Clin. Exp. Immunol.106 ( 2 ), 259 – 264 ( 1996 ).
  • Chapman AP , AntoniwP , SpitaliM , WestS , StephensS , KingDJ . Therapeutic antibody fragments with prolonged in vivo half-lives . Nat. Biotechnol.17 ( 8 ), 780 – 783 ( 1999 ).
  • Kuntz E . Hepatology: Principles and Practice; History, Morphology, Biochemistry, Diagnostics, Clinic, Therapy.Springer , Germany ( 2006 ).
  • Xie H , SvenmarkerP , AxelssonJet al. Pharmacokinetic and biodistribution study following systemic administration of Fospeg® – a Pegylated liposomal mTHPC formulation in a murine model . J. Biophotonics doi:10.1002/jbio.201300133 ( 2013 ) ( Epub ahead of print ).
  • Gabizon A , HorowitzAT , GorenD , TzemachD , ShmeedaH , ZalipskyS . In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice . Clin. Cancer Res.9 ( 17 ), 6551 – 6559 ( 2003 ).
  • Lewanski CR , StewartS . Pegylated liposomal adriamycin: a review of current and future applications . Pharm. Sci. Technol. Today2 ( 12 ), 473 – 477 ( 1999 ).
  • Mamot C , DrummondDC , NobleCOet al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo . Cancer Res.65 ( 24 ), 11631 – 11638 ( 2005 ).
  • Jain RK , StylianopoulosT . Delivering nanomedicine to solid tumors . Nat. Rev. Clin. Oncol.7 ( 11 ), 653 – 664 ( 2010 ).
  • Fujimori K , CovellDG , FletcherJE , WeinsteinJN . A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier . J. Nucl. Med.31 ( 7 ), 1191 – 1198 ( 1990 ).
  • Li Y , WangJ , WientjesMG , AuJL . Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor . Adv. Drug Deliv. Rev.64 ( 1 ), 29 – 39 ( 2012 ).
  • Sexton K , TichauerK , SamkoeKS , GunnJ , HoopesPJ , PogueBW . Fluorescent affibody peptide penetration in glioma margin is superior to full antibody . PLoS ONE8 ( 4 ), e60390 ( 2013 ).
  • Matsumura Y , MaedaH . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs . Cancer Res.46 ( 12 Pt 1 ), 6387 – 6392 ( 1986 ).
  • Koh WW , SteffensenS , Gonzalez-PajueloMet al. Generation of a family-specific phage library of llama single chain antibody fragments that neutralize HIV-1 . J. Biol. Chem.285 ( 25 ), 19116 – 19124 ( 2010 ).
  • Sukhanova A , Even-DesrumeauxK , KisserliAet al. Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes . Nanomedicine8 ( 4 ), 516 – 525 ( 2012 ).
  • Massa S , XavierC , De VosJet al. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging . Bioconjug. Chem.25 ( 5 ), 979 – 988 ( 2014 ).
  • Wood DW , CamareroJA . Intein applications: from protein purification and labeling to metabolic control methods . J. Biol. Chem.289 ( 21 ), 14512 – 14519 ( 2014 ).
  • Popp MW , AntosJM , PloeghHL . Site-specific protein labeling via sortase-mediated transpeptidation . Curr. Protoc. Protein Sci.Chapter 15 , Unit 15.3 ( 2009 ).
  • Mao H , HartSA , SchinkA , PollokBA . Sortase-mediated protein ligation: a new method for protein engineering . J. Am. Chem. Soc.126 ( 9 ), 2670 – 2671 ( 2004 ).
  • Proft T . Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation . Biotechnol. Lett.32 ( 1 ), 1 – 10 ( 2010 ).
  • Moses JE , MoorhouseAD . The growing applications of click chemistry . Chem. Soc. Rev.36 ( 8 ), 1249 – 1262 ( 2007 ).
  • Spangler JB , NeilJR , AbramovitchSet al. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling . Proc. Natl Acad. Sci. USA107 ( 30 ), 13252 – 13257 ( 2010 ).
  • Mamot C , DrummondDC , GreiserUet al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells . Cancer Res.63 ( 12 ), 3154 – 3161 ( 2003 ).
  • Mamot C , RitschardR , KungW , ParkJW , HerrmannR , RochlitzCF . EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells . J. Drug Target.14 ( 4 ), 215 – 223 ( 2006 ).
  • Prat M , CrepaldiT , PennacchiettiS , BussolinoF , ComoglioPM . Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF . J. Cell. Sci.111 ( Pt 2 ), 237 – 247 ( 1998 ).
  • Defize LH , MoolenaarWH , van der SaagPT , de LaatSW . Dissociation of cellular responses to epidermal growth factor using anti-receptor monoclonal antibodies . EMBO J.5 ( 6 ), 1187 – 1192 ( 1986 ).
  • Talelli M , ImanM , VarkouhiAKet al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin . Biomaterials31 ( 30 ), 7797 – 7804 ( 2010 ).
  • Lim EK , JangE , LeeK , HaamS , HuhYM . Delivery of cancer therapeutics using nanotechnology . Pharmaceutics5 ( 2 ), 294 – 317 ( 2013 ).
  • van de Water JA , Bagci-OnderT , AgarwalASet al. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects . Proc. Natl Acad. Sci. USA109 ( 41 ), 16642 – 16647 ( 2012 ).
  • Hofman EG , RuonalaMO , BaderANet al. EGF induces coalescence of different lipid rafts . J. Cell. Sci.121 ( Pt 15 ), 2519 – 2528 ( 2008 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.