1,254
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Variations of The Corona HDL:Albumin Ratio Determine Distinct Effects of Amorphous SiO2 Nanoparticles on Monocytes and Macrophages in Serum

, , , , , , , & show all
Pages 2481-2497 | Received 15 Oct 2013, Accepted 20 Jan 2014, Published online: 24 Mar 2014

References

  • Fedeli C , SelvestrelF, TavanoR, SegatD, MancinF, PapiniE. Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes. Nanomedicine (Lond.)8(7), 1101–1126 (2012).
  • Broz P , von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe8(6), 471–483 (2010).
  • Miao EA , RajanJV, AderemA. Caspase-1-induced pyroptotic cell death. Immunol. Rev.243(1), 206–214 (2011).
  • Shao W , YeretssianG, DoironK, HussainSN, SalehM. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem.282(50), 36321–36329 (2007).
  • Martinon F , MayorA, TschoppJ. The inflammasomes: guardians of the body. Annu. Rev. Immunol.27, 229–265 (2009).
  • Bauernfeind F , AblasserA, BartokEet al. Inflammasomes: current understanding and open questions. Cell. Mol. Life Sci. 68(5), 765–783 (2011).
  • Morishige T , YoshiokaY, InakuraHet al. The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta production, ROS production and endosomal rupture. Biomaterials 31(26), 6833–6842 (2010).
  • Meunier E , CosteA, OlagnierDet al. Double-walled carbon nanotubes trigger IL-1beta release in human monocytes through NLRP3 inflammasome activation. Nanomedicine 8(6), 987–995 (2012).
  • Lunov O , SyrovetsT, LoosCet al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 5(3), 1657–1669 (2011).
  • Hornung V , BauernfeindF, HalleAet al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9(8), 847–856 (2008).
  • Sandberg WJ , LagM, HolmeJAet al. Comparison of non-crystalline silica nanoparticles in IL-1beta release from macrophages. Part. Fibre Toxicol. 9, 32 (2012).
  • Sharp FA , RuaneD, ClaassBet al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106(3), 870–875 (2009).
  • Reisetter AC , StebounovaLV, BaltrusaitisJet al. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J. Biol. Chem. 286(24), 21844–21852 (2011).
  • Walkey CD , ChanWC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev.41(7), 2780–2799 (2012).
  • Aggarwal P , HallJB, McLelandCB, DobrovolskaiaMA, McNeilSE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev.61(6), 428–437 (2009).
  • Mortensen NP , HurstGB, WangW, FosterCM, NallathambyPD, RettererST. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale5(14), 6372–6380 (2013).
  • Monopoli MP , AbergC, SalvatiA, DawsonKA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol.7(12), 779–786 (2012).
  • Casals E , PfallerT, DuschlA, OostinghGJ, PuntesV. Time evolution of the nanoparticle protein corona. ACS Nano.4(7), 3623–3632 (2010).
  • Nagayama S , OgawaraK, FukuokaY, HigakiK, KimuraT. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int. J. Pharm.342(1–2), 215–221 (2007).
  • Jansch M , StumpfP, GrafC, RuhlE, MullerRH. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int. J. Pharm.428(1–2), 125–133 (2012).
  • Tenzer S , DocterD, KuharevJet al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772–781 (2013).
  • Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307(1), 93–102 (2006).
  • Lesniak A , FenaroliF, MonopoliMP, AbergC, DawsonKA, SalvatiA. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano.6(7), 5845–5857 (2012).
  • Ehrenberg MS , FriedmanAE, FinkelsteinJN, OberdorsterG, McGrathJL. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials30(4), 603–610 (2009).
  • Barran-Berdon AL , PozziD, CaraccioloGet al. Time evolution of nanoparticle–protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29(21), 6485–6494 (2013).
  • Deng ZJ , LiangM, MonteiroM, TothI, MinchinRF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol.6(1), 39–44 (2011).
  • Costantini LM , GilbertiRM, KnechtDA. The phagocytosis and toxicity of amorphous silica. PLoS ONE6(2), e14647 (2011).
  • Park EJ , ParkK. Oxidative stress and proinflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett.184(1), 18–25 (2009).
  • Chang JS , ChangKL, HwangDF, KongZL. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol.41(6), 2064–2068 (2007).
  • Peters R , KramerE, OomenAGet al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano. 6(3), 2441–2451 (2012).
  • Tavano R , FranzosoS, CecchiniPet al. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA-OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J. Leukoc. Biol. 86(1), 143–153 (2009).
  • Zinchuk V , ZinchukO, OkadaT. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem. Cytochem.40(4), 101–111 (2007).
  • Forgac M . Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol.8(11), 917–929 (2007).
  • Bowman EJ , SiebersA, AltendorfK. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl Acad. Sci. USA85(21), 7972–7976 (1988).
  • Rabuffetti M , ScioratiC, TarozzoG, ClementiE, ManfrediAA, BeltramoM. Inhibition of caspase-1-like activity by Ac–Tyr–Val–Ala–Asp–chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J. Neurosci.20(12), 4398–4404 (2000).
  • Ferrari D , PizziraniC, AdinolfiEet al. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176(7), 3877–3883 (2006).
  • Kahlenberg JM , DubyakGR. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am. J. Physiol. Cell. Physiol.286(5), C1100–8 (2004).
  • Netea MG , SimonA, van de Veerdonk F, Kullberg BJ, Van der Meer JW, Joosten LA. IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog.6(2), e1000661 (2010).
  • Perregaux DG , McNiffP, LaliberteR, ConklynM, GabelCA. ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J. Immunol.165(8), 4615–4623 (2000).
  • Lynch I , CedervallT, LundqvistM, Cabaleiro-LagoC, LinseS, DawsonKA. The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci.134–135, 167–174 (2007).
  • Lartigue L , WilhelmC, ServaisJet al. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano. 6(3), 2665–2678 (2012).
  • Sabuncu AC , GrubbsJ, QianS, Abdel-FattahTM, StaceyMW, BeskokA. Probing nanoparticle interactions in cell culture media. Colloids Surf. B Biointerfaces95, 96–102 (2012).
  • Maiorano G , SabellaS, SorceBet al. Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano. 4(12), 7481–7491 (2010).
  • Dell‘Orco D , LundqvistM, OslakovicC, CedervallT, LinseS. Modeling the time evolution of the nanoparticle–protein corona in a body fluid. PLoS ONE5(6), e10949 (2010).
  • Cedervall T , LynchI, FoyMet al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. Engl. 46(30), 5754–5756 (2007).
  • Forte TM , Bell-QuintJJ, ChengF. Lipoproteins of fetal and newborn calves and adult steer: a study of developmental changes. Lipids16(4), 240–245 (1981).
  • Shi J , HedbergY, LundinM, Odnevall Wallinder I, Karlsson HL, Moller L. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona. Acta Biomater.8(9), 3478–3490 (2012).
  • Sahai N . Biomembrane phospholipid–oxide surface interactions: crystal chemical and thermodynamic basis. J. Colloid Interface Sci.252(2), 309–319 (2002).
  • Tenzer S , DocterD, RosfaSet al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 5(9), 7155–7167 (2011).
  • Hellstrand E , LynchI, AnderssonAet al. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276(12), 3372–3381 (2009).
  • Lundqvist M , StiglerJ, EliaG, LynchI, CedervallT, DawsonKA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA105(38), 14265–14270 (2008).
  • Wang F , YuL, MonopoliMPet al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9(8), 1159–1168 (2013).
  • Seshadri S , DuncanMD, HartJM, GavrilinMA, WewersMD. Pyrin levels in human monocytes and monocyte-derived macrophages regulate IL-1beta processing and release. J. Immunol.179(2), 1274–1281 (2007).
  • Salvati A , PitekAS, MonopoliMPet al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137–143 (2013).
  • Lesniak A , CampbellA, MonopoliMP, LynchI, SalvatiA, DawsonKA. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials31(36), 9511–9518 (2010).
  • Laurent S , BurteaC, ThirifaysC, RezaeeF, MahmoudiM. Significance of cell ‘observer’ and protein source in nanobiosciences. J. Colloid Interface Sci.392, 431–445 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.