125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stable Confinement of Positron Emission Tomography and Magnetic Resonance Agents Within Carbon Nanotubes for Bimodal Imaging

, , , , &
Pages 2499-2509 | Received 19 Aug 2013, Accepted 29 Jan 2014, Published online: 17 Mar 2014

References

  • Hahn MA , SinghAK, SharmaP, BrownSC, MoudgilBM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem.399(1), 3–27 (2011).
  • Lee DE , KooH, SunIC, RyuJH, KimK, KwonIC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev.41(7), 2656 (2012).
  • Sailor MJ , ParkJH. Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater.24(28), 3779–3802 (2012).
  • Treacy MMJ , EbbesenTW, GibsonJM. Exceptionally high Young‘s modulus observed for individual carbon nanotubes. Nature381(6584), 678–680 (1996).
  • Ouyang M , HuangJL, LieberCM. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res.35(12), 1018–1025 (2002).
  • Pantarotto D , BriandJP, PratoM, BiancoA. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun.1, 16–17 (2004).
  • Guven A , RusakovaIA, LewisMT, WilsonLJ. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials33(5), 1455–1461 (2012).
  • Gautam UK , CostaPMFJ, BandoYet al. Recent developments in inorganically filled carbon nanotubes: successes and challenges. Sci. Technol. Adv. Mater. 11, 054501 (2010).
  • Hao D , AiT, GoernerF, HuX, RungeVM, TweedleM. MRI contrast agents: basic chemistry and safety. J. Magn. Reson. Imaging36(5), 1060–1071 (2012).
  • Hirsch A . Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed.41(11), 1853–1859 (2002).
  • Mackeyev Y , HartmanKB, AnantaJS, LeeAV, WilsonLJ. Catalytic synthesis of amino acid and peptide derivatized gadonanotubes. J. Am. Chem. Soc.131(24), 8342–8343 (2009).
  • Bianco A , KostarelosK, PartidosCD, PratoM. Biomedical applications of functionalised carbon nanotubes. Chem Commun.5, 571–577 (2005).
  • Allen TM , CullisPR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65(1), 36–48 (2013).
  • Liu Z , YangK, LeeST. Single-walled carbon nanotubes in biomedical imaging. J. Mater. Chem.21(3), 586 (2011).
  • McDevitt MR , ChattopadhyayD, JaggiJSet al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE 2(9), e907 (2007).
  • Liu Z , CaiW, HeLet al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol.2(1), 47–52 (2007).
  • Luo J , WilsonJD, ZhangJet al. A dual PET/MR imaging nanoprobe: 124I labeled Gd3N@C80. Appl. Sci. 2(4), 465–478 (2012).
  • Richard C , DoanBT, BeloeilJC, BessodesM, TothE, SchermanD. Noncovalent functionalizatsion of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T-1 and T-2 MRI contrast agents. Nano Lett.8(1), 232–236 (2008).
  • Choi JH , NguyenFT, BaronePWet al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 7(4), 861–867 (2007).
  • Hong SY , TobiasG, Al-JamalKTet al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 9(6), 485–490 (2010).
  • Sitharaman B , KissellKR, HartmanKBet al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 31, 3915–3917 (2005).
  • Laurent S , ElstLV, MullerRN. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol. Imaging1(3), 128–137 (2006).
  • Judenhofer MS , WehrlHF, NewportDFet al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14(4), 459–465 (2008).
  • Jarrett BR , GustafssonB, KukisDL, LouieAY. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug. Chem.19(7), 1496–1504 (2008).
  • Comes Franchini M , PucciA, LocatelliEet al. Biocompatible nanocomposite for PET/MRI hybrid imaging. Int. J. Nanomedicine 7, 6021–6033 (2012).
  • Gu Z , PengH, HaugeRH, SmalleyRE, MargraveJL. Cutting single-wall carbon nanotubes through fluorination. Nano Lett.2(9), 1009–1013 (2002).
  • Ashcroft JM , HartmanKB, MackeyevYet al. Functionalization of individual ultra-short single-walled carbon nanotubes. Nanotechnology 17(20), 5033–5037 (2006).
  • Sampath L , KwonS, HallMA, PriceRE, Sevick-MuracaEM. Detection of cancer metastases with a dual-labeled near-infrared/positron emission tomography imaging agent. Transl. Oncol.3(5), 307–317 (2010).
  • Ghosh SC , GhoshP, WilganowskiNet al. Multimodal chelation platform for near-infrared fluorescence/nuclear imaging. J. Med. Chem. 56(2), 406–416 (2013).
  • Idée J-M , Port M, Raynal I, Schaefer M, Le Greneur S, Corot C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam. Clin. Pharmacol.20(6), 563–576 (2006).
  • Tran LA , KrishnamurthyR, MuthupillaiRet al. Gadonanotubes as magnetic nanolabels for stem cell detection. Biomaterials 31(36), 9482–9491 (2010).
  • Kolosnjaj-Tabi J , HartmanKB, BoudjemaaSet al.: In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano.4(3), 1481–1492 (2012).
  • Hartman KB , LausS, BolskarRDet al. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett. 8(2), 415–419 (2012).
  • Wang R , CarducciMD, ZhengZ. Direct hydrolytic route to molecular oxo−hydroxo lanthanide clusters. Inorg. Chem.39(9), 1836–1837 (2000).
  • Sethi R , MackeyevY, WilsonLJ. The gadonanotubes revisited: a new frontier in MRI contrast agent design. Inorganica Chim. Acta.393, 165–172 (2012).
  • Gizzatov A , DimievA, MackeyevY, TourJM, WilsonLJ. Highly water soluble multi-layer graphene nanoribbons and related honey-comb carbon nanostructures. Chem. Commun.48(45), 5602–5604 (2012).
  • Rogers BE , AndersonCJ, ConnettJMet al. Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconjug. Chem. 7(4), 511–522 (1996).
  • Salvador-Morales C , TownsendP, FlahautEet al. Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45(3), 607–617 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.