201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Partial Mitigation of Gold Nanoparticle Interactions with Human Lymphocytes by Surface Functionalization with A ‘Mixed Matrix‘

, , , , , & show all
Pages 2467-2479 | Received 11 Oct 2013, Accepted 30 Jan 2014, Published online: 18 Jun 2014

References

  • Dykman L , KhlebtsovN. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev.41(6), 2256–2282 (2012).
  • Dreaden EC , AlkilanyAM, HuangX, MurphyCJ, El-SayedMA. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev.41(7), 2740–2779 (2012).
  • Yeh YC , CreranB, RotelloVM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale4(6), 1871–1880 (2012).
  • De Barros AB , TsourkasA, SabouryB, CardosoVN, AlaviA. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res.2(1), 39 (2012).
  • Chen G , OhulchanskyyTY, LiuSet al. Core/shell NaGdF4:Nd(3+)/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 6(4), 2969–2977 (2012).
  • Kumar A , MaH, ZhangXet al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 33(4), 1180–1189 (2012).
  • Duchesne L , GentiliD, Comes-FranchiniM, FernigDG. Robust ligand shells for biological applications of gold nanoparticles. Langmuir24(23), 13572–13580 (2008).
  • Dobrovolskaia MA , AggarwalP, HallJB, McNeilSE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm.5(4), 487–495 (2008).
  • Dobrovolskaia MA , ClogstonJD, NeunBW, HallJB, PatriAK, McNeilSE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett.8(8), 2180–2187 (2008).
  • Dobrovolskaia MA , GermolecDR, WeaverJL. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol.4(7), 411–414 (2009).
  • Dobrovolskaia MA , McNeilSE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J. Control. Release172(2), 456–466 (2013).
  • Dobrovolskaia MA , McNeilSE. Immunological properties of engineered nanomaterials. Nat. Nanotechnol.2(8), 469–478 (2007).
  • Thakor AS , JokerstJ, ZavaletaC, MassoudTF, GambhirSS. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett.11(10), 4029–4036 (2011).
  • Mcmahon SJ , HylandWB, MuirMFet al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep. 1, 18 (2011).
  • Goy-Lopez S , JuarezJ, Alatorre-MedaMet al. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 28(24), 9113–9126 (2012).
  • Lartigue L , WilhelmC, ServaisJet al. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano 6(3), 2665–2678 (2012).
  • Elbakry A , WursterEC, ZakyAet al. Layer-by-layer coated gold nanoparticles: size-dependent delivery of DNA into cells. Small 8(24), 3847–3856 (2012).
  • Lundqvist M , StiglerJ, EliaG, LynchI, CedervallT, DawsonKA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA105(38), 14265–14270 (2008).
  • Hulander M , LundgrenA, BerglinM, OhrlanderM, LausmaaJ, ElwingH. Immune complement activation is attenuated by surface nanotopography. Int. J. Nanomedicine6, 2653–2666 (2011).
  • Deng ZJ , LiangM, MonteiroM, TothI, MinchinRF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol.6(1), 39–44 (2011).
  • Deng ZJ , LiangMT, TothI, MonteiroM, MinchinRF. Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology7(3), 314–322 (2013).
  • Deng ZJ , LiangMT, TothI, MonteiroMJ, MinchinRF. Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano6(10), 8962–8969 (2012).
  • Chen XY , QoutahWW, FreeP, HobleyJ, FernigDG, ParamelleD. Features of thiolated ligands promoting resistance to ligand exchange in self-assembled monolayers on gold nanoparticles. Aust. J. Chem.65, 266–274 (2012).
  • Duchesne L , OcteauV, BearonRNet al. Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PloS Biol. 10, e1001361 (2012).
  • Lutsiak ME , KwonGS, SamuelJ. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J. Pharm. Pharmacol.58(6), 739–747 (2006).
  • Diwan M , ElamanchiliP, CaoM, SamuelJ. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Curr. Drug Deliv.1(4), 405–412 (2004).
  • Chong CS , CaoM, WongWWet al. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control. Release 102(1), 85–99 (2005).
  • Van Zijverden M , GranumB. Adjuvant activity of particulate pollutants in different mouse models. Toxicology152(1–3), 69–77 (2000).
  • De Kozak Y , AndrieuxK, VillarroyaHet al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur. J. Immunol. 34(12), 3702–3712 (2004).
  • Haiss W , ThanhNTK, AveyardJ, FernigDG. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem.79, 4215–4221 (2007).
  • Liptrott NJ , CurleyP, MossD, BackDJ, KhooSH, OwenA. Interactions between tenofovir and nevirapine in CD4+ T cells and monocyte-derived macrophages restrict their intracellular accumulation. J. Antimicrob. Chemother.68(11), 2545–2549 (2013).
  • Farrell J , JenkinsonC, LavergneSN, MaggsJL, Kevin Park B, Naisbitt DJ. Investigation of the immunogenicity of p-phenylenediamine and Bandrowski‘s base in the mouse. Toxicol. Lett.185(3), 153–159 (2009).
  • Owens DE , 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307(1), 93–102 (2006).
  • Casals E , PfallerT, DuschlA, OostinghGJ, PuntesV. Time evolution of the nanoparticle protein corona. ACS Nano4(7), 3623–3632 (2010).
  • Prach M , StoneV, ProudfootL. Zinc oxide nanoparticles and monocytes: impact of size, charge and solubility on activation status. Toxicol. Appl. Pharmacol.266(1), 19–26 (2013).
  • Plascencia-Villa G , StarrCR, ArmstrongLS, PonceA, Jose-YacamanM. Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques. Integr. Biol. (Camb.)4(11), 1358–1366 (2012).
  • Sapozhnikova V , WillseyB, AsmisRet al. Use of near-infrared luminescent gold nanoclusters for detection of macrophages. J. Biomed. Opt. 17(2), 026006 (2012).
  • Larson TA , JoshiPP, SokolovK. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano6(10), 9182–9190 (2012).
  • Villiers C , FreitasH, CoudercR, VilliersMB, MarcheP. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J. Nanopart. Res.12(1), 55–60 (2010).
  • Wiwanitkit V , SereemaspunA, RojanathanesR. Effect of gold nanoparticle on the microscopic morphology of white blood cell. Cytopathology20(2), 109–110 (2009).
  • See V , FreeP, CesbronYet al. Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3, 2461–2468 (2009).
  • Sharma M , SalisburyRL, MaurerEI, HussainSM, SulenticCE. Gold nanoparticles induce transcriptional activity of NF-kappaB in a B-lymphocyte cell line. Nanoscale5(9), 3747–3756 (2013).
  • Tulinska J , KazimirovaA, KuricovaMet al. Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model. Nanotoxicology doi: 10.3109/17435390.2013.816798 (2013) (Epub ahead of print).
  • Jiang H , LiuF, YangH, LiY. Effects of cobalt nanoparticles on human T cells in vitro. Biol. Trace Elem. Res.146(1), 23–29 (2012).
  • Lunov O , SyrovetsT, LoosCet al. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5(12), 9648–9657 (2011).
  • Winter M , BeerHD, HornungV, KramerU, SchinsRP, ForsterI. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology5(3), 326–340 (2011).
  • Guarda G , DostertC, StaehliFet al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460(7252), 269–273 (2009).
  • Srivastava R , BurbachBJ, ShimizuY. NF-kappaB activation in T cells requires discrete control of IkappaB kinase alpha/beta (IKKalpha/beta) phosphorylation and IKKgamma ubiquitination by the ADAP adapter protein. J. Biol. Chem.285(15), 11100–11105 (2010).
  • Caruso A , LicenziatiS, CorulliMet al. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry 27(1), 71–76 (1997).
  • Hosono M , De Boer OJ, Van Der Wal AC et al. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction. Atherosclerosis168(1), 73–80 (2003).
  • Zhang ZQ , SchulerT, ZupancicMet al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286(5443), 1353–1357 (1999).
  • Harrop JA , ReddyM, DedeKet al. Antibodies to TR2 (herpesvirus entry mediator), a new member of the TNF receptor superfamily, block T cell proliferation, expression of activation markers, and production of cytokines. J. Immunol. 161(4), 1786–1794 (1998).
  • Del Prete G , De Carli M, Almerigogna F et al. Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines. FASEB J.9(1), 81–86 (1995).
  • Fiorentino DF , ZlotnikA, VieiraPet al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146(10), 3444–3451 (1991).
  • Schoenborn JR , WilsonCB. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol.96, 41–101 (2007).
  • Westendorp RGJ , Langermans JaM, Huizinga TWJ et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet349(9046), 170–173 (1997).
  • Danis VA , MillingtonM, HylandVJ, GrennanD. Cytokine production by normal human monocytes: inter-subject variation and relationship to an IL-1 receptor antagonist (IL-1Ra) gene polymorphism. Clin. Exp. Immunol.99(2), 303–310 (1995).
  • Shapira L , WilenskyA, KinaneDF. Effect of genetic variability on the inflammatory response to periodontal infection. J. Clin. Periodontol.32(s6), 72–86 (2005).
  • De Rosa SC , LuFX, YuJet al. Vaccination in humans generates broad T cell cytokine responses. J. Immunol. 173(9), 5372–5380 (2004).
  • Connolly NC , WhitesideTL, WilsonC, KondraguntaV, RinaldoCR, RiddlerSA. Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cells is safe and induces immunogenicity in HIV-1-infected individuals. Clin. Vaccine Immunol.15(2), 284–292 (2008).
  • Lalvani A , MorisP, VossGet al. Potent induction of focused Th1-type cellular and humoral immune responses by RTS, S/SBAS2, a recombinant Plasmodium falciparum malaria vaccine. J. Infect. Dis. 180(5), 1656–1664 (1999).
  • Inoue K , TakanoH, YanagisawaRet al. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ. Health Perspect. 114(9), 1325–1330 (2006).
  • Salmen S , BerruetaL. Immune modulators of HIV infection: the role of reactive oxygen species. J. Clin. Cell. Immunol.3, 121 (2012).
  • Kiessling MK , LinkeB, BrechmannM, SussD, KrammerPH, GulowK. Inhibition of NF-kappaB induces a switch from CD95L-dependent to CD95L-independent and JNK-mediated apoptosis in T cells. FEBS Lett.584(22), 4679–4688 (2010).
  • Jones DP . Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol.295(4), C849–C868 (2008).
  • Diebold I , PetryA, BurgerM, HessJ, GorlachA. NOX4 mediates activation of FoxO3a and matrix metalloproteinase-2 expression by urotensin-II. Mol. Biol. Cell22(22), 4424–4434 (2011).
  • Drummond GR , SelemidisS, GriendlingKK, SobeyCG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov.10(6), 453–471 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.