923
Views
2
CrossRef citations to date
0
Altmetric
Review

A Vision for Cyclodextrin Nanoparticles in Drug Delivery Systems and Pharmaceutical Applications

&
Pages 877-894 | Published online: 01 Jul 2014

References

  • Villiers A . Sur la fermentation de la fécule par l'action du ferment butyrique. Compt. Rend. Acad. Sci.112, 536–538 (1891).
  • Hirayama F , UekamaK. Cyclodextrin-based controlled drug release system. Adv. Drug. Deliv. Rev.36 (1), 125–141 (1999).
  • Wenz G . Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed.33 (8), 803–822 (1994).
  • Zhang P , Chang-ChunL, ColemanAW, Parrot-LopezH, GalonsH. Formation of amphiphilic cyclodextrins via hydrophobic esterification at the secondary hydroxyl face. Tetrahedron Lett.32 (24), 2769–2770 (1991).
  • Lehn J-M , SandersJ. Supramolecular Chemistry: Concepts and Perspectives.VCH Weinheim, Weinheim, Germany, 154 (1995).
  • Bilensoy E , GürkaynakO, DoğanAL, HincalAA. Safety and efficacy of amphiphilic β-cyclodextrin nanoparticles for paclitaxel delivery. Int. J. Pharm.347 (1), 163–170 (2008).
  • Bilensoy E , GürkaynakO, ErtanM, ŞenM, HincalAA. Development of nonsurfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J. Pharm. Sci.97 (4), 1519–1529 (2008).
  • Agüeros M , Ruiz-GatónL, VauthierCet al. Combined hydroxypropyl-β-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur. J. Pharm. Sci.38 (4), 405–413 (2009).
  • Agüeros M , ZabaletaV, EspuelasS, CampaneroM, IracheJ. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly (anhydride) nanoparticles. J. Control. Release145 (1), 2–8 (2010).
  • Wang X , ChenC, HuoDet al. Synthesis of β-cyclodextrin modified chitosan–poly(acrylic acid) nanoparticles and use as drug carriers. Carbohydr. Polym.90, 361–369 (2012).
  • He H , ChenS, ZhouJet al. Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials.34 (21), 5344–5358 (2013).
  • Çirpanli Y , BilensoyE, Lale DoğanA, ÇalişS. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery   Eur. J. Pharm. Biopharm.73 (1), 82–89 (2009).
  • Gaur S , ChenL, YenTet al. Preclinical study of the cyclodextrin-polymer conjugates of camptothecin CRLX101 for the treatment of gastric cancer. Nanomedicine8 (5), 721–730 (2012).
  • Dhule SS , PenfornisP, FrazierTet al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine8 (4), 440–451 (2012).
  • Michel D , ChitandaJM, BaloghRet al. Design and evaluation of cyclodextrin-based delivery systems to incorporate poorly soluble curcumin analogs for the treatment of melanoma. Eur. J. Pharm. Biopharm.81 (3), 548–556 (2012).
  • Quaglia F , OstacoloL, MazzagliaA, VillariV, ZaccariaD, SciortinoMT. The intracellular effects of non-ionic amphiphilic cyclodextrin nanoparticles in the delivery of anticancer drugs. Biomaterials30 (3), 374–382 (2009).
  • Wang J , ZongJ-Y, ZhaoD, ZhuoR-X, ChengS-X. In situ formation of chitosan-cyclodextrin nanospheres for drug delivery. Colloids Surf. B Biointerfaces.87 (1), 198–202 (2011).
  • Mazzaferro S , BouchemalK, SkanjiR, GueutinC, ChacunH, PonchelG. Intestinal permeation enhancement of docetaxel encapsulated into methyl-β-cyclodextrin/poly(isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan. J. Control. Release162 (3), 568–574 (2012).
  • Anand R , ManoliF, ManetIet al. β-cyclodextrin polymer nanoparticles as carriers for doxorubicin and artemisinin: a spectroscopic and photophysical study. Photochem. Photobiol. Sci.11 (8), 1285–1292 (2012).
  • Memisoglu-Bilensoy E , VuralI, BochotA, RenoirJM, DucheneD, HincalAA. Tamoxifen citrate loaded amphiphilic β-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity. J. Control. Release104 (3), 489–496 (2005).
  • Zhu W , ZhangK, ChenY, XiF. Simple, clean preparation method for cross-linked α-cyclodextrin nanoparticles via inclusion complexation. Langmuir29 (20), 5939–5943 (2013).
  • Sortino S , MazzagliaA, Monsù ScolaroL, Marino MerloF, ValveriV, SciortinoMT. Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as carrier-sensitizer system in photodynamic cancer therapy. Biomaterials27 (23), 4256–4265 (2006).
  • Thiele C , AuerbachD, JungG, QiongL, SchneiderM, WenzG. Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polym. Chem.2 (1), 209–215 (2011).
  • Sahu S , MohapatraS. Multifunctional magnetic fluorescent hybrid nanoparticles as carriers for the hydrophobic anticancer drug 5-fluorouracil. Dalton Trans.42 (6), 2224–2231 (2013).
  • Gao S , SunJ, FuD, ZhaoH, LanM, GaoF. Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles. Int. J. Pharm.427 (2), 410–416 (2012).
  • Alamdarnejad G , SharifA, TaranejooSet al. Synthesis and characterization of thiolated carboxymethyl chitosan–graft–cyclodextrin nanoparticles as a drug delivery vehicle for albendazole. J. Mater. Sci. Mater. Med.24 (8), 1939–1949 (2013).
  • Bozkir A , SakaOM. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv.11 (2), 107–112 (2004).
  • Katas H , AlparHO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release115 (2), 216–225 (2006).
  • Teijeiro-Osorio D , Remuñán-LópezC, AlonsoMJ. Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro.   Eur. J. Pharm. Biopharm.71 (2), 257–263 (2009).
  • Park In-K , RecumHA. von Jiang, S, PunSH. Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery. Langmuir22, 8478–8484 (2006).
  • Godinho B . MDC, Ogier JR, DarcyR, O'DriscollCM, CryanJF, Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington's disease. Mol. Pharm.10, 640–649 (2013).
  • Chaturvedi K , GangulyK, KulkarniAR, KulkarniVHet al. Cyclodextrin-based siRNA delivery nanaocarriers: a state-of-the-art review. Expert Opin. Drug Deliv.8, 1455–1468 (2011).
  • Ping Y , LiuC, ZhangZ, LiuKL, ChenJ, LiJ. Chitosan–graft–(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials32 (32), 8328–8341 (2011).
  • Guo J , OgierJR, DesgrangesS, DarcyR. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials33 (31), 7775–7784 (2012).
  • O'Mahony AM , OgierJ, DesgrangesS, CryanJF, DarcyR, O'DriscollCM. A click chemistry route to 2-functionalised PEGylated and cationic β-cyclodextrins: co-formulation opportunities for siRNA delivery. Org. Biomol. Chem.10 (25), 4954–4960 (2012).
  • Trapani A , LopedotaA, FrancoMet al. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur. J. Pharm. Biopharm.75 (1), 26–32 (2010).
  • Méndez-Ardoy A , UrbiolaK, ArandaC, Ortiz-MelletC, García-FernándezJM, De IlarduyaCT. Polycationic amphiphilic cyclodextrin-based nanoparticles for therapeutic gene delivery. Nanomedicine (Lond.)6 (10), 1697–1707 (2011).
  • Byrne C , SallasF, RaiDK, OgierJ, DarcyR. Poly-6-cationic amphiphilic cyclodextrins designed for gene delivery. Org. Biomol. Chem.7 (18), 3763–3771 (2009).
  • Bellocq NC , PunSH, JensenGS, DavisME. Transferrin-containing, cyclodextrin polymer based particles for tumor targeted gene delivery. Bioconjugate Chem.14, 1122–1132 (2003).
  • Cerchiara T , LuppiB, BigucciF, ZecchiV. Effect of chitosan on progesterone release from hydroxypropyl-β-cyclodextrin complexes. Int. J. Pharm.258 (1–2), 209–215 (2003).
  • Da Silveira AM , PonchelG, PuisieuxF, DuchêneD. Combined poly(isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm. Res.15 (7), 1051–1055 (1998).
  • Memişoğlu E , BochotA, ŞenM, DuchêneD, HincalAA. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int. J. Pharm.251 (1–2), 143–153 (2003).
  • Memisoglu-Bilensoy E , SenM, HincalAA. Effect of drug physicochemical properties on in vitro characteristics of amphiphilic cyclodextrin nanospheres and nanocapsules. J. Microencapsul.23 (1), 59–68 (2006).
  • Cavalli R , TrottaF, CarlottiME, PossettiB, TrottaM. Nanoparticles derived from amphiphilic γ-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem.57 (1–4), 657–661 (2007).
  • Lemos-Senna E , WouessidjeweD, LesieurS, DucheneD. Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int. J. Pharm.170 (1), 119–128 (1998).
  • Zhang N , LiJ, JiangWet al. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm.393 (1), 213–219 (2010).
  • Sajeesh S , SharmaCP. Cyclodextrin–insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm.325 (1), 147–154 (2006).
  • Sajeesh S , BouchemalK, MarsaudV, VauthierC, SharmaCP. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J. Control. Release147 (3), 377–384 (2010).
  • Xuejiao Z , XingeZ, XiujunG, ShunjunS. β-cyclodextrin grafting hyperbranched polyglycerols as carriers for nasal insulin delivery. Carbohydr. Polym.84 (4), 1419–1425 (2010).
  • Zhang X , WuZ, GaoXet al. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release. Carbohydr. Polym.77 (2), 394–401 (2009).
  • Krauland AH , AlonsoMJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int. J. Pharm.340 (1), 134–142 (2007).
  • Cavalli R , DonalisioM, CivraAet al. Enhanced antiviral activity of acyclovir loaded into β-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. J. Control. Release137 (2), 116–122 (2009).
  • Daoud-Mahammed S , Ringard-LefebvreC, RazzouqNet al. Spontaneous association of hydrophobized dextran and poly-β-cyclodextrin into nanoassemblies: formation and interaction with a hydrophobic drug. J. Colloid Interface Sci.307 (1), 83–93 (2007).
  • Nielsen AL , SteffensenK, LarsenKL. Self-assembling microparticles with controllable disruption properties based on cyclodextrin interactions. Colloids Surf. B Biointerfaces73 (2), 267–275 (2009).
  • Boudad H , LegrandP, LebasG, CheronM, DucheneD, PonchelG. Combined hydroxypropyl-β-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int. J. Pharm.218 (1), 113–124 (2001).
  • Hwang J , RodgersK, OliverJC, SchluepT. α-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int. J. Nano.3 (3), 359–372 (2008).
  • Jingou J , ShileiH, WeiqiL, DanjunW, TengfeiW, YiX. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids Surf. B Biointerfaces.83 (1), 103–107 (2011).
  • Trapani A , Garcia-FuentesM, AlonsoM. Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan. Nanotechnology19 (18), 185101 (2008).
  • Du Y-Z , XuJ-G, WangL, YuanH, HuF-Q. Preparation and characteristics of hydroxypropyl-β-cyclodextrin polymeric nanocapsules loading nimodipine. Eur. Polym. J.45 (5), 1397–1402 (2009).
  • Sangwai M , VaviaP. Amorphous ternary cyclodextrin nanocomposites of telmisartan for oral drug delivery: Improved solubility and reduced pharmacokinetic variability. Int. J. Pharm.453 (2), 423–432 (2013).
  • Memişoğlu E , BochotA, ÖzalpM, ŞenM, DuchêneD, HincalAA. Direct formation of nanospheres from amphiphilic β-cyclodextrin inclusion complexes. Pharm. Res.20 (1), 117–125 (2003).
  • Xin J , GuoZ, ChenX, JiangW, LiJ, LiM. Study of branched cationic β-cyclodextrin polymer/indomethacin complex and its release profile from alginate hydrogel. Int. J. Pharm.386 (1), 221–228 (2010).
  • Anirudhan T , DiluD, SandeepS. Synthesis and characterisation of chitosan crosslinked-β-cyclodextrin grafted silylated magnetic nanoparticles for controlled release of indomethacin. J. Magn. Magn. Mater.343, 149–156 (2013).
  • Calvo J , LavanderaJL, AgüerosM, IracheJM. Cyclodextrin/poly(anhydride) nanoparticles as drug carriers for the oral delivery of atovaquone. Biomed. Microdevices13 (6), 1015–1025 (2011).
  • Sadighi A , OstadS, RezayatS, ForoutanM, FaramarziM, DorkooshF. Mathematical modelling of the transport of hydroxypropyl-β-cyclodextrin inclusion complexes of ranitidine hydrochloride and furosemide loaded chitosan nanoparticles across a Caco-2 cell monolayer. Int. J. Pharm.422 (1), 479–488 (2012).
  • Cirri M , BragagniM, MenniniN, MuraP. Development of a new delivery system consisting in ‘drug-in cyclodextrin-in nanostructured lipid carriers' for ketoprofen topical delivery. Eur. J. Pharm. Biopharm.80 (1), 46–53 (2012).
  • Yuan Z , YeY, GaoFet al. Chitosan-graft- β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int. J. Pharm.446 (1–2), 191–198 (2013).
  • Banerjee SS , ChenD-H. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater.19 (25), 6345–6349 (2007).
  • Maestrelli F , ZerroukN, CirriM, MenniniN, MuraP. Microspheres for colonic delivery of ketoprofen–hydroxypropyl-β-cyclodextrin complex. Eur. J. Pharm. Sci.34 (1), 1–11 (2008).
  • Ghera BB , PerretF, ChevalierY, Parrot-LopezH. Novel nanoparticles made from amphiphilic perfluoroalkyl α-cyclodextrin derivatives: preparation, characterization and application to the transport of acyclovir. Int. J. Pharm.375 (1), 155–162 (2009).
  • Perret F , MarminonC, ZeinyehWet al. Preparation and characterization of CK2 inhibitor-loaded cyclodextrin nanoparticles for drug delivery. Int. J. Pharm.441 (1–2), 491–498 (2013).
  • Perret F , DuffourM, ChevalierY, Parrot-LopezH. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir. Eur. J. Pharm. Biopharm.83 (1), 25–32 (2013).
  • Mahmoud AA , El-FekyGS, KamelR, AwadGE. Chitosan/sulfobutylether–β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm.413 (1), 229–236 (2011).
  • Agüeros M , AresesP, CampaneroMAet al. Bioadhesive properties and biodistribution of cyclodextrin–poly (anhydride) nanoparticles. Eur. J. Pharm. Sci.37 (3–4), 231–240 (2009).
  • Luppi B , BigucciF, CoraceGet al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur. J. Pharm. Sci.44 (4), 559–565 (2011).
  • Trapani A , LaquintanaV, DenoraNet al. Eudragit RS 100 microparticles containing 2-hydroxypropyl-β-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur. J. Pharm. Sci.30 (1), 64–74 (2007).
  • Lopedota A , TrapaniA, CutrignelliAet al. The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur. J. Pharm. Biopharm.72 (3), 509–520 (2009).
  • Chaleawlert-Umpon S , NuchuchuaO, SaesooSet al. Effect of citrate spacer on mucoadhesive properties of a novel water-soluble cationic β-cyclodextrin-conjugated chitosan. Carbohydr. Polym.84 (1), 186–194 (2011).
  • Sajomsang W , NuchuchuaO, GonilPet al. Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr. Polym.89 (2), 623–631 (2012).
  • Khalil SK , El-FekyGS, El-BannaST, KhalilWA. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr. Polym.90 (3), 1244–1253 (2012).
  • Maestrelli F , Garcia-FuentesM, MuraP, AlonsoMJ. A new drug nanocarrier consisting of chitosan and hydroxypropylcyclodextrin. Eur. J. Pharm. Biopharm.63 (2), 79–86 (2006).
  • Kwon TK , KimJC. In vitro skin permeation of monoolein nanoparticles containing hydroxypropyl β-cyclodextrin/minoxidil complex. Int. J. Pharm.392 (1), 268–273 (2010).
  • Gil ES , LiJ, XiaoH, LoweTL. Quaternary ammonium β-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood–brain barrier. Biomacromolecules10 (3), 505–516 (2009).
  • Gil ES , WuL, XuL, LoweTL. β-cyclodextrin-poly (β-amino ester) nanoparticles for sustained drug delivery across the blood–brain barrier. Biomacromolecules13 (11), 3533–3541 (2012).
  • Skiba M , Skiba-LahianiM, ArnaudP. Design of nanocapsules based on novel fluorophilic cyclodextrin derivatives and their potential role in oxygen delivery. J. Incl. Phenom. Macrocycl. Chem.44 (1–4), 151–154 (2002).
  • Cavalli R , AkhterAK, BisazzaA, GiustettoP, TrottaF, VaviaP. Nanosponge formulations as oxygen delivery systems. Int. J. Pharm.402 (1), 254–257 (2010).
  • Geze A , ChauLT, ChoisnardLet al. Biodistribution of intravenously administered amphiphilic β-cyclodextrin nanospheres. Int. J. Pharm.344 (1), 135–142 (2007).
  • Memisoglu-Bilensoy E , DoganAL, HincalAA. Cytotoxic evaluation of injectable cyclodextrin nanoparticles. J. Pharm. Pharmacol.58 (5), 585–589 (2006).
  • El Fagui A , DalmasF, LorthioirC, WintgensV, VoletG, AmielC. Well-defined core–shells containing cyclodextrin in the shell: a comprehensive study. Polymer52 (17), 3752–3761 (2011).
  • Baek J-S , SoJ-W, ShinS-C, ChoC-W. Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-β-cyclodextrin as an oral delivery system. Inter. J. Mol. Med.30 (4), 953–959 (2012).
  • Spada G , GaviniE, CossuM, RassuG, GiunchediP. Solid lipid nanoparticles with and without hydroxypropyl-β-cyclodextrin: a comparative study of nanoparticles designed for colonic drug delivery. Nanotechnology23 (9), 095101 (2012).
  • Mariangela De Burgos MD , TasicL, FattoriJet al. New formulation of an old drug in hypertension treatment: the sustained release of captopril from cyclodextrin nanoparticles. Inter. J. Nano.6, 1005 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.