559
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crucial Role of the Protein Corona for the Specific Targeting of Nanoparticles

, , , , , & show all
Pages 215-226 | Published online: 20 Jan 2015

References

  • Sanvicens N , MarcoMP . Multifunctional nanoparticles – properties and prospects for their use in human medicine . Trends Biotechnol.26 ( 8 ), 425 – 433 ( 2008 ).
  • Sharifi S , BehzadiS , LaurentS , ForrestML , StroeveP , MahmoudiM . Toxicity of nanomaterials . Chem. Soc. Rev.41 , 2323 – 2343 ( 2012 ).
  • Mahmoudi M , LynchI , EjtehadiMR , MonopoliMP , BombelliFB , LaurentS . Protein−nanoparticle interactions: opportunities and challenges . Chem. Rev.111 ( 9 ), 5610 – 5637 ( 2011 ).
  • Laurent S , BurteaC , ThirifaysC , RezaeeF , MahmoudiM . Significance of cell ‘observer’ and protein source in nanobiosciences . J. Colloid Interface Sci.392 , 431 – 445 ( 2013 ).
  • Ghavami M , SaffarS , Abd EmamyBet al. Plasma concentration gradient influences the protein corona decoration on nanoparticles . RSC Advances3 ( 4 ), 1119 – 1126 ( 2013 ).
  • Monopoli MP , WalczykD , CampbellAet al. Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles . J. Am. Chem. Soc.133 ( 8 ), 2525 – 2534 ( 2011 ).
  • Mahmoudi M , AbdelmonemAM , BehzadiSet al. Temperature: the ‘ignored’ factor at the nanobio interface . ACS Nano7 ( 8 ), 6555 – 6562 ( 2013 ).
  • Mahmoudi M , LohseSE , MurphyCJ , FathizadehA , MontazeriA , SuslickKS . Variation of protein corona composition of gold nanoparticles following plasmonic heating . Nano Lett.14 ( 1 ), 6 – 12 ( 2014 ).
  • Lesniak A , FenaroliF , MonopoliMP , ÅbergC , DawsonKA , SalvatiA . effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells . ACS Nano6 ( 7 ), 5845 – 5857 ( 2012 ).
  • Walczyk D , BombelliFB , MonopoliMP , LynchI , DawsonKA . What the cell ‘sees’ in bionanoscience . J. Am. Chem. Soc.132 ( 16 ), 5761 – 5768 ( 2010 ).
  • Schaefer J , SchulzeC , MarxerEEJet al. Atomic force microscopy and analytical ultracentrifugation for probing nanomaterial protein interactions . ACS Nano6 ( 6 ), 4603 – 4614 ( 2012 ).
  • Lynch I , CedervallT , LundqvistM , Cabaleiro-LagoC , LinseS , DawsonKA . The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century . Adv. Colloid Interface Sci.167 , 134 – 135 ( 2007 ).
  • Gazeau F , WilhelmC . Magnetic labeling, imaging and manipulation of endothelial progenitor cells using iron oxide nanoparticles . Future Med. Chem.2 ( 3 ), 397 – 408 ( 2010 ).
  • Laurent S , DutzS , HäfeliUO , MahmoudiM . Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles . Adv. Colloid Interface Sci.166 ( 1 ), 8 – 23 ( 2011 ).
  • Amstad E , GillichT , BileckaI , TextorM , ReimhultE . Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups . Nano Lett.9 ( 12 ), 4042 – 4048 ( 2009 ).
  • Amstad E , KohlbrecherJ , MuüLlerE , SchweizerT , TextorM , ReimhultE . Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes . Nano Lett.11 ( 4 ), 1664 – 1670 ( 2011 ).
  • Choi JH , NguyenFT , BaronePWet al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes . Nano Lett.7 ( 4 ), 861 – 867 ( 2007 ).
  • Yigit MV , MooreA , MedarovaZ . Magnetic nanoparticles for cancer diagnosis and therapy . Pharmacol. Res.29 ( 5 ), 1180 – 1188 ( 2012 ).
  • Figuerola A , Di CoratoR , MannaL , PellegrinoT . From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications . Pharmacol. Res.62 ( 2 ), 126 – 143 ( 2010 ).
  • Laurent S , ForgeD , PortMet al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications . Chem. Rev.108 ( 6 ), 2064 – 2110 ( 2008 ).
  • Laurent S , BridotJL , ElstLV , MullerRN . Magnetic iron oxide nanoparticles for biomedical applications . Future Med. Chem.2 ( 3 ), 427 – 449 ( 2010 ).
  • Park J , AnK , HwangYet al. Ultra-large-scale syntheses of monodisperse nanocrystals . Nat. Mater.3 ( 12 ), 891 – 895 ( 2004 ).
  • Amiri H , BordonaliL , LascialfariAet al. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles . Nanoscale5 ( 18 ), 8656 – 8665 ( 2013 ).
  • Xu Y , QinY , PalchoudhuryS , BaoY . Water-soluble iron oxide nanoparticles with high stability and selective surface functionality . Langmuir27 ( 14 ), 8990 – 8997 ( 2011 ).
  • Wiogo HTR , LimM , BulmusV , YunJ , AmalR . Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS) . Langmuir27 ( 2 ), 843 – 850 ( 2010 ).
  • Monopoli MP , ÅbergC , SalvatiA , DawsonKA . Biomolecular coronas provide the biological identity of nanosized materials . Nat. Nanotechnol.7 ( 12 ), 779 – 786 ( 2012 ).
  • Queiroz KC , TioRA , ZeebregtsCJet al. Human plasma very low density lipoprotein carries Indian hedgehog . J. Proteome Res.9 ( 11 ), 6052 – 6059 ( 2010 ).
  • Dashti M , KulikW , HoekF , VeermanEC , PeppelenboschMP , RezaeeF . A phospholipidomic analysis of all defined human plasma lipoproteins . Sci. Rep.1 , 139 ( 2011 ).
  • Dashty M , MotazackerMM , LevelsJet al. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism . Thromb. Haemost.111 ( 3 ), 518 – 530 ( 2014 ).
  • Yancey PG , BortnickAE , Kellner-WeibelG , De La Llera-MoyaM , PhillipsMC , RothblatGH . Importance of different pathways of cellular cholesterol efflux . Arterioscler. Thromb. Vasc. Biol.23 ( 5 ), 712 – 719 ( 2003 ).
  • Von Eckardstein A , NoferJ-R , AssmannG . High density lipoproteins and arteriosclerosis role of cholesterol efflux and reverse cholesterol transport . Arterioscler. Thromb. Vasc. Biol.21 ( 1 ), 13 – 27 ( 2001 ).
  • Takahashi Y , SmithJD . Cholesterol efflux to apolipoprotein AI involves endocytosis and resecretion in a calcium-dependent pathway . Proc. Natl Acad. Sci. USA96 ( 20 ), 11358 – 11363 ( 1999 ).
  • Zensi A , BegleyD , PontikisCet al. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood–brain barrier and enter the rodent brain . J. Drug Target.18 ( 10 ), 842 – 848 ( 2010 ).
  • Fioravanti J , Medina-EcheverzJ , ArdaizNet al. The fusion protein of IFN-α and apolipoprotein A-I crosses the blood–brain barrier by a saturable transport mechanism . J. Immunol.188 ( 8 ), 3988 – 3992 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.