323
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanomedicine Strategies for Targeting Skin Inflammation

, , &
Pages 1727-1743 | Published online: 16 Oct 2014

References

  • Nasir A . Nanotechnology and dermatology: part I – potential of nanotechnology. Clin. Dermatol.28 (4), 458–466 (2010).
  • Gupta M , AgrawalU, VyasP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv.9 (7), 783–803 (2012).
  • Prow T , GriceJ, LinLet al. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev.63, 470–491 (2011).
  • Cevc G , VierlU. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J. Control. Release141, 277–299 (2010).
  • Nasir A , FriedmanA. Nanotechnology and the Nanodermatology Society. J. Drugs Dermatol.9 (7), 879–882 (2010).
  • Saraceno R , ChiricozziA, GabelliniM, ChimentiS. Emerging applications of nanomedicine in dermatology. Skin Res. Technol.19 (1), 13–19 (2013).
  • Korting HC , Schäfer-KortingM. Carriers in the topical treatment of skin disease. Handb. Exp. Pharmacol.197, 435–468 (2010).
  • Kulka M . Mechanisms and treatment of photoaging and photodamage. In:Using Old Solutions to New Problems – Natural Drug Discovery in the 21st Century.KulkaM (Ed.). InTech, Croatia, 255–276 (2013).
  • Anderson C . Part I: skin disorders and therapies; treatment of dermatitis. In:Dermatologic, Cosmeceutic and Cosmetic Development, Therapeutic and Novel Approaches.WaltersK, RobertsM (Eds). Informa healthcare, NY, USA, 21–43 (2008).
  • Pople PV , SinghKK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis – part II: in vivo assessment of dermatopharmacokinetics, biodistribution and efficacy. Int. J. Pharm.434 (1), 70–79 (2012).
  • Rahman S , CollinsM, WilliamsCM, MaHL. The pathology and immunology of atopic dermatitis. Inflamm. Allergy Drug Targets10 (6), 486–496 (2011).
  • Soumelis V , RechePA, KanzlerHet al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol.3 (7), 673–680 (2002).
  • Shaw TE , CurrieGP, KoudelkaCW, SimpsonEL. Eczema prevalence in the United States: data from the 2003 National Survey of Children's Health. J. Invest. Dermatol.131, 67–73 (2011).
  • Grillo M , GassnerL, MarshmanG, DunnS, HudsonP. Pediatric atopic eczema: the impact of an educational intervention. Pediatr. Dermatol.23, 428–436 (2006).
  • Flohr C , MannJ. New insights into the epidemiology of childhood atopic dermatitis. Allergy69 (1), 3–16 (2014).
  • Ring J , AlomarA, BieberTet al. Guidelines for treatment of atopic eczema (atopic dermatitis) part I. J. Eur. Acad. Dermatol. Venereol.26 (8), 1045–1060 (2012).
  • Ruzicka T , BieberT, SchöpfEet al. A short-term trial of tacrolimus ointment for atopic dermatitis. N. Engl. J. Med.337, 816–821 (1997).
  • Reitamo S , WollenbergA, SchöpfEet al. Safety and efficacy of 1 year of tacrolimus ointment monotherapy in adults with atopic dermatitis. Arch. Dermatol.136, 999–1006 (2000).
  • Meurer M , Fölster-HolstR, WozelGet al. Pimecrolimus cream in the long-term management of atopic dermatitis in adults: a six-month study. Dermatology205, 271–277 (2002).
  • Wollenberg A , ReitamoS, GirolomoniGet al. Proactive treatment of atopic dermatitis in adults with 0.1% tacrolimus ointment. Allergy63, 742–750 (2008).
  • Thaci D , ReitamoS, Gonzalez EnsenatMAet al. Proactive disease management with 0.03% tacrolimus ointment for children with atopic dermatitis: results of a randomized, multicentre, comparative study. Br. J. Dermatol.159, 1348–1356 (2008).
  • Vicentini FT , DepieriLV, PolizelloACet al. Liquid crystalline phase nanodispersions enable skin delivery of siRNA. Eur. J. Pharm. Biopharm.83 (1), 16–24 (2013).
  • Bonneville M , ChavagnacC, VocansonMet al. Skin contact irritation conditions the development and severity of allergic contact dermatitis. J. Invest. Dermatol.127 (6), 1430–1435 (2007).
  • Dessinioti C , KatsambasA. Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies. Clin. Dermatol.31 (4), 343–351 (2013).
  • Herouy Y , MelliosP, BandemirEet al. Inflammation in stasis dermatitis upregulates MMP-1, MMP-2 and MMP-13 expression. J. Dermatol. Sci.25 (3), 198–205 (2001).
  • Del Rosso JQ . Management of papulopustular rosacea and perioral dermatitis with emphasis on iatrogenic causation or exacerbation of inflammatory facial dermatoses: use of doxycycline-modified release 40mg capsule once daily in combination with properly selected skin care as an effective therapeutic approach. J. Clin. Aesthet. Dermatol.4 (8), 20–30 (2011).
  • Perry AD , TrafeliJP. Hand dermatitis: review of etiology, diagnosis, and treatment. J. Am. Board Fam. Med.22 (3), 325–330 (2009).
  • Gabor M . Models of acute inflammation in the ear. Methods Mol. Biol.225, 129–137 (2003).
  • Tanaka A , AmagaiY, OidaK, MatsudaH. Recent findings in mouse models for human atopic dermatitis. Exp. Anim.61 (2), 77–84 (2012).
  • Jin H , HeR, OyoshiM, GehaRS. Animal models of atopic dermatitis. J. Invest. Dermatol.129 (1), 31–40 (2009).
  • Yamamoto M , HarunaT, YasuiKet al. A novel atopic dermatitis model induced by topical application with dermatophagoides farinae extract in NC/Nga mice. Allergol. Int.56 (2), 139–148 (2007).
  • Oble DA , CollettE, HsiehMet al. A novel T cell receptor transgenic animal model of seborrheic dermatitis-like skin disease. J. Invest. Dermatol.124 (1), 151–159 (2005).
  • Nalamothu V , O'LearyAL, KandavilliS, FraserJ, PandyaV. Evaluation of a nonsteroidal topical cream in a guinea pig model of Malassezia furfur infection. Clin. Dermatol.27 (6), 41–43 (2009).
  • Baspinar Y , BorchertHH. Penetration and release studies of positively and negatively charged nanoemulsions – is there a benefit of the positive charge?Int. J. Pharm.430 (1), 247–252 (2012).
  • Schmidts T , MarquardtK, SchluppPet al. Development of drug delivery systems for the dermal application of therapeutic DNAzymes. Int. J. Pharm.431 (1), 61–69 (2012).
  • Shah PP , DesaiPR, ChannerD, SinghM. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J. Control. Release161 (3), 735–745 (2012).
  • Desai PR , ShahPP, PatlollaRR, SinghM. Dermal microdialysis technique to evaluate the trafficking of surface-modified lipid nanoparticles upon topical application. Pharm. Res.29 (9), 2587–2600 (2012).
  • Shah KA , DateAA, JoshiMD, PatravaleVB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int. J. Pharm.345 (1), 163–171 (2007).
  • Santos Maia C , MehnertW, SchallerMet al. Drug targeting by solid lipid nanoparticles for dermal use. J. Drug Target.10, 489–495 (2002).
  • Pople PV , SinghKK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int. J. Pharm.398 (1), 165–178 (2010).
  • Hasanovic A , HoellerS, ValentaC. Analysis of skin penetration of phytosphingosine by fluorescence detection and influence of the thermotropic behaviour of DPPC liposomes. Int. J. Pharm.383 (1), 14–17 (2010).
  • Cevc G , BlumeG, SchatzleinA. Transdermal drug carriers: basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. J. Control. Release36, 3–16 (1995).
  • Cevc G , SchatzleinA, RichardsenH. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta1564, 21–30 (2002).
  • Honeywell-Nguyen PL , GoorisGS, BouwstraJA. Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J. Invest. Dermatol.123, 902–910 (2004).
  • Sinico C , FaddaAM. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv.6 (8), 813–825 (2009).
  • Cevc G , BlumeG, SchatzleinA. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo. J. Control. Release45, 211–226 (1997).
  • Cevc G , BlumeG. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes. Biochim. Biophys. Acta1614, 156–164 (2003).
  • Cevc G , BlumeG. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim. Biophys. Acta1663, 61–73 (2004).
  • Romero E , MorillaM. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int. J. Nanomedicine8, 1–16 (2013).
  • Li G , FanY, FanCet al. Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. Eur. J. Pharm. Biopharm.82 (1), 49–57 (2012).
  • Cosco D , CeliaC, CilurzoF, TrapassoE, PaolinoD. Colloidal carriers for the enhanced delivery through the skin. Expert Opin. Drug Deliv.5 (7), 737–755 (2008).
  • Marianecci C , RinaldiF, MastriotaMet al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J. Control. Release164 (1), 17–25 (2012).
  • Alvarez-Román R , NaikA, KaliaYN, GuyRH, FessiH. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release99 (1), 53–62 (2004).
  • Shah PP , DesaiPR, PatelAR, SinghMS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials33 (5), 1607–1617 (2012).
  • Özcan I , AzizogluE, SenyigitT, ÖzyaziciM, ÖzerÖ. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. Int. J. Nanomedicine8, 461–475 (2013).
  • Özcan I , AzizogluE, SenyigitT, ÖzyaziciM, ÖzerÖ. Comparison of PLGA and lecithin/chitosan nanoparticles for dermal targeting of betamethasone valerate. J. Drug Target.21 (6), 542–550 (2013).
  • Batheja P , SheihetL, KohnJ, SingerAJ, Michniak-KohnB. Topical delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release149 (2), 159–167 (2011).
  • Hussain Z , KatasH, Mohd AminMC, KumolosasiE, BuangF, SahudinS. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: an ex vivo and in vivo study using an NC/Nga mouse model. Int. J. Pharm.444 (1), 109–119 (2013).
  • Lademann J , RichterH, TeichmannAet al. Nanoparticles – an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm.66 (2), 159–164 (2007).
  • Abdel-Mottaleb MMA , MoulariB, BeduneauA, PellequerY, LamprechtA. Nanoparticles enhance therapeutic outcome in inflamed skin therapy. Eur. J. Pharm. Biopharm.82 (1), 151–157 (2012).
  • Abdel-Mottaleb MMA , MoulariB, BeduneauA, PellequerY, LamprechtA. Surface-charge-dependent nanoparticles accumulation in inflamed skin. J. Pharm. Sci.101 (11), 4231–4239 (2012).
  • Kohli AK , AlparHO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int. J. Pharm.275 (1), 13–17 (2004).
  • Shah PP , DesaiPR, SinghM. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J. Control. Release158 (2), 336–345 (2012).
  • Convertine AJ , BenoitDS, DuvallCL, HoffmanAS, StaytonPS. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Control. Release133 (3), 221–229 (2009).
  • Xiong XB , UludagH, LavasanifarA. Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials30 (2), 242–253 (2009).
  • Wong V , SorkinM, GlotzbachJ, LongakerM, GurtnerG. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol.2011, 969618 (2011).
  • Desai PR , MarepallyS, PatelAR, VoshavarC, ChaudhuriA, SinghM. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release170 (1), 51–63 (2013).
  • Nadworny PL , WangJ, TredgetEE, BurrellRE. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. J. Inflamm. (Lond.)7, 13 (2010).
  • Bhol KC , SchechterPJ. Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br. J. Dermatol.152, 1235–1242 (2005).
  • Ayala-Núñez NV , Lara VillegasHH, del Carmen Ixtepan TurrentL, Rodríguez PadillaC. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnology5, 2–9 (2009).
  • AshaRani P , MunG, HandeM, ValiyaveettilS. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano3 (2), 279–290 (2009).
  • Caballero-Díaz E , PfeifferC, KastlL, Rivera-GilPet al. The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part. Part. Syst. Charact.30, 1079–1085 (2013).
  • Manconia M , PendásJ, LedónNet al. Phycocyanin liposomes for topical anti-inflammatory activity: in-vitro in-vivo studies. J. Pharm. Pharmacol.61 (4), 423–430 (2009).
  • Caddeo C , SalesOD, ValentiD, SauríAR, FaddaAM, ManconiM. Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: liposomes, ethosomes and PEVs. Int. J. Pharm.443 (1), 128–136 (2013).
  • Nasir A . Nanotechnology and dermatology: part II – risks of nanotechnology. Clin. Dermatol.28 (5), 581–588 (2010).
  • Nel A , XiaT, MädlerL, LiN. Toxic potential of materials at the nanolevel. Science311, 622–627 (2006).
  • Guo L , Von Dem BusscheA, BuechnerM, YanA, KaneB, HurtR. Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small4 (6), 721–727 (2008).
  • Monteiro-Riviere N , InmanA, ZhangL. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol.234, 222–235 (2009).
  • Zhang LW , ZengL, BarronAR, Monteiro-RiviereNA. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicol.26, 103–113 (2007).
  • Graf C , MeinkeM, GaoQet al. Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission x-ray microscopy. J. Biomed. Opt.14 (2), 1015 (2009).
  • Abdel-Mottaleb MMA , NeumannD, LamprechtA, Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm.79, 36–42 (2011).
  • Wu X , BiatryB, CazeneuveC, GuyRH. Drug delivery to the skin from submicron polymeric particle formulations: influence of particle size and polymer hydrophobicity. Pharm. Res.26, 1995–2001 (2009).
  • Wu X , PriceGJ, GuyRH. Disposition of nanoparticles and an associated lipophilic permeant following topical application to the skin. Mol. Pharm.6, 1441–1448 (2009).
  • Zhang LW , Monteiro-RiviereNA. Assessment of quantum dot penetration into intact, tape stripped, abraded and flexed rat skin. Skin Pharmacol. Physiol.21, 166–180 (2008).
  • Pinheiro T , PallonJ, AlvesLCet al. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nucl. Instr. Meth. Phys. Res.260, 119–123 (2007).
  • Monteiro-Riviere NA , WienchK, LandsiedelR, SchulteS, InmanAO, RiviereJE. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol. Sci.123 (1), 264–280 (2011).
  • Kezic S , NielsenJB. Absorption of chemicals through compromised skin. Int. Arch. Occup. Environ. Health82 (6), 677–688 (2009).
  • Gupta J , GrubeE, EricksenMBet al. Intrinsically defective skin barrier function in children with atopic dermatitis correlates with disease severity. J. Allergy Clin. Immunol.121, 725–730 (2008).
  • Jakasa I , de JonghCM, VerberkMM, BosJD, KezicTS. Percutaneous penetration of sodium lauryl sulphate is increased in uninvolved skin of patients with atopic dermatitis compared with control subjects. Br. J. Dermatol.155, 104–109 (2006).
  • Jakasa I , de JonghCM, VerberkMM, BosJD, KezicTS. Altered penetration of polyethylene glycols into uninvolved skin of atopic dermatitis patients. J. Invest. Dermatol.127, 129–134 (2007).
  • Lin LL , GriceJE, ButlerMKet al. Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm. Res.28 (11), 2920–2930 (2011).
  • Prow TW , Monteiro-RiviereNA, InmanAOet al. Quantum dot penetration into viable human skin. Nanotoxicology6 (2), 173–185 (2012).
  • Monteiro-Riviere NA , ZhangLW. Assessment of quantum dots penetration into skin in different species under different mechanical actions. In:Nanomaterials: Risks and Benefits.LinkovI, SteevensJ (Eds.)Springer Science, Business Media BV, The Netherlands, 43–522009).
  • Oshima S , SuzukiC, YajimaRet al. The use of an artificial skin model to study transdermal absorption of drugs in inflamed skin. Biol. Pharm. Bull.35 (2), 203–209 (2012).
  • Samberg ME , OldenburgSJ, Monteiro-RiviereNA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect.118, 407–413 (2010).
  • Hirai T , YoshikawaT, NabeshiHet al. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part. Fibre Toxicol.9, 3 (2012).
  • Simonsson C , MadsenJT, GraneliAet al. A study of the enhanced sensitizing capacity of a contact allergen in lipid vesicle formulations. Toxicol. Appl. Pharmacol.252 (3), 221–227 (2011).
  • Hussain S , SmuldersS, De VooghtVet al. Nano-titanium dioxide modulates the dermal sensitization potency of DNCB. Part. Fibre Toxicol.9, 15 (2012).
  • Lasch J , LaubR, WohlrabW. How deep do intact liposomes penetrate into human skin?J. Control. Release.18, 55–58 (1991).
  • Du Plessis J , RamachandranC, WeinerN, MüllerDG. The influence of particle size of liposomes on the disposition of drug into the skin. Int. J. Pharm.103, 277–282 (1994).
  • El Maghraby GM , BarryBW, WilliamsAC. Liposomes and skin: from drug delivery to model membranes. Eur. J. Pharm. Sci.34, 203–222 (2008).
  • Moser K , KriwetK, KaliaYN, GuyRH. Enhanced skin permeation of a lipophilic drug using supersaturated formulations. J. Control. Release.73, 245–253 (2001).
  • Fujii Y , SengokuT, TakakuraS. Repeated topical application of glucocorticoids augments irritant chemical-triggered scratching in mice. Arch. Dermatol. Res.302, 645–652 (2010).
  • Gutfreund K , BieniasW, SzewczykA, KaszubaA. Topical calcineurin inhibitors in dermatology. Part I: properties, method and effectiveness of drug use. Postepy Dermatol. Alergol.30 (3), 165–169 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.