406
Views
0
CrossRef citations to date
0
Altmetric
Review

Finite-Element Modeling and Analysis in Nanomedicine and Dentistry

, &
Pages 1681-1695 | Published online: 16 Oct 2014

References

  • Choi AH , MatinlinnaJ, ConwayRet al. Application of biomaterials and finite element analysis (FEA) in nanomedicine and nanodentistry. In : Computational Finite Element Methods in Nanotechnology. SarhanMM ( Ed.). CRC Press, FL, USA, 373–399 (2012).
  • Huang TT , JonesAS, HeLHet al. Characterisation of enamel white spot lesions using x-ray micro-tomography. J. Dent.35, 737–743 (2007).
  • Knets IV , PfafrodGO, SaulgozisJZ. Deformation and fracture of hard biological tissue. Zinatne Riga319 (1980).
  • Weiner S , WagnerHD. The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci.28, 271–298 (1998).
  • Ruppel ME , MillerLM, BurrDB. The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos. Int.19, 1251–1265 (2008).
  • Arce FT , MeckesB, CampSMet al. Heterogeneous elastic response of human lung microvascular endothelial cells to barrier modulating stimuli. Nanomedicine9, 875–884 (2013).
  • Ladjal H , HanusJL, FerreiraA. Micro-to-nano biomechanical modeling for assisted biological cell injection. IEEE Trans. Biomed. Eng.60, 2461–2471 (2013).
  • Wood ST , DeanBC, DeanD. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models. Med. Image Anal.17, 337–347 (2013).
  • Shah S , LiuY, HuWet al. Modeling particle shape-dependent dynamics in nanomedicine. J. Nanosci. Nanotechnol.11, 919–928 (2011).
  • Tan J , ThomasA, LiuY. Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter22, 1934–1946 (2011).
  • Xing M , ZhongW, XuXet al. Adhesion force studies of nanofibers and nanoparticles. Langmuir26, 11809–11814 (2010).
  • Sassaroli E , LiKC, O'NeillBE. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications. Phys. Med. Biol.54, 5541–5560 (2009).
  • Elliott AM , ShettyAM, WangJet al. Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours. Int. J. Hyperthermia26, 434–440 (2010).
  • Reynoso FJ , LeeCD, CheongSKet al. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method. Med. Phys.40, 073301 (2013).
  • Hadjidakis DJ , AndroulakisII. Bone remodeling. Ann. NY Acad. Sci.1092, 385–396 (2006).
  • Bianco P , RiminucciM, GronthosSet al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells19, 180–192 (2001).
  • Teteitelbaum SL . Bone resorption by osteoclasts. Science289, 1504–1508 (2000).
  • Huiskes R . Validation of adaptive bone-remodeling simulation models. Stud. Health Technol. Inform.40, 33–48 (1997).
  • Huiskes R , WeinansH, GrootenboerHJet al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech.20, 1135–1150 (1987).
  • Payten WM , Ben-NissanB. Optimal structure formation using a chaotic self-organisational algorithm. Comput. Graphics21, 685–688 (1997).
  • Tanaka E , YamamotoS, NishidaTet al. A mathematical model of bone remodelling under overload and its application to evaluation of bone resorption around dental implants. Acta Bioeng. Biomech.1, 117–121 (1999).
  • Alierta JA , PérezMA, García-AznarJM. An interface finite element model can be used to predict healing outcome of bone fractures. J. Mech. Behav. Biomed. Mater.29, 328–338 (2014).
  • Comiskey D , MacDonaldBJ, McCartneyWTet al. Predicting the external formation of callus tissues in oblique bone fractures: idealised and clinical case studies. Biomech. Model. Mechanobiol.12, 1277–1282 (2013).
  • García-Aznar JM , KuiperJH, Gómez-BenitoMJet al. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech.40, 1467–1476 (2007).
  • Byrne DP , LacroixD, PrendergastPJ. Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J. Orthop. Res.29, 1496–1503 (2011).
  • Grivas KN , VavvaMG, SellountosEJet al. A meshless local boundary integral equation (LBIE) method for cell proliferation predictions in bone healing. Conf. Proc. IEEE Eng. Med. Biol. Soc.2013, 2676–2679 (2013).
  • Shefelbine SJ , AugatP, ClaesLet al. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J. Biomech.38, 2440–2450 (2005).
  • Katz JL , MeunierA. The elastic anisotropy of bone. J. Biomech.20, 1063–1070 (1987).
  • Wang C , WangL, LiuXet al. Numerical simulation of the remodelling process of trabecular architecture around dental implants. Comput. Methods Biomech. Biomed. Engin.17, 286–295 (2014).
  • Eser A , TonukE, AkcaKet al. Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. J. Biomech.46, 2250–2257 (2013).
  • Chou HY , RomanosG, MüftüAet al. Peri-implant bone remodeling around an extraction socket: predictions of bone maintenance by finite element method. Int. J. Oral Maxillofac. Implants27, e39–e48 (2012).
  • Moreo P , García-AznarJM, DoblaréM. Bone ingrowth on the surface of endosseous implants. Part 1: mathematical model. J. Theor. Biol.7, 1–12 (2009).
  • Vanegas-Acosta JC , LandinezP NS, Garzón-AlvaradoDAet al. A finite element method approach for the mechanobiological modeling of the osseointegration of a dental implant. Comput. Methods Programs Biomed.101, 297–314 (2011).
  • Mellal A , WiskottHW, BotsisJet al. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin. Oral Implants Res.15, 239–248 (2004).
  • Lin CL , LinYH, ChangSH. Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla: prediction using FEA and SED bone remodeling algorithm. J. Biomech.43, 644–651 (2010).
  • Lee WT , KoakJY, LimYJet al. Stress shielding and fatigue limits of polyether-ether-ketone dental implants. J. Biomed. Mater. Res. B Appl. Biomater.100, 1044–1052 (2012).
  • Wang C , LiQ, McCleanCet al. Numerical simulation of dental bone remodeling induced by implant-supported fixed partial denture with or without cantilever extension. Int. J. Numer. Method Biomed. Eng.29, 1134–1147 (2013).
  • Field C , LiQ, LiWet al. A comparative mechanical and bone remodelling study of all-ceramic posterior inlay and onlay fixed partial dentures. J. Dent.40, 48–56 (2012).
  • Lin D , LiQ, LiWet al. Mandibular bone remodeling induced by dental implant. J. Biomech.43, 287–293 (2010).
  • Haque F . Application of nanoindentation to development of biomedical materials. Surf. Eng.19, 255–268 (2003).
  • Field JS , SwainMV. A simple predictive model for spherical indentation. J. Mater. Res.8, 297–306 (1993).
  • Field JS , SwainMV. Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res.10, 101–112 (1995).
  • Fischer-Cripps AC . Introduction to Nanoindentation.Springer, NY, USA (2002).
  • Gan L , Ben-NissanB, Ben-DavidA. Modelling and finite element analysis of ultra-microhardness indentation of thin films. Thin Solid Films290–291, 362–366 (1996).
  • Chen J , LuG. Finite element modelling of nanoindentation based methods for mechanical properties of cells. J. Biomech.45, 2810–2816 (2012).
  • Evans DW , MoranEC, BaptistaPMet al. Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech. Model Mechanobiol.12, 569–580 (2013).
  • Roos WH , GibbonsMM, ArkhipovAet al. Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophys. J.99, 1175–1181 (2010).
  • Ahadi A , JohanssonD, EvilevitchA. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids. J. Biol. Phys.39, 183–199 (2013).
  • Adam CJ , SwainMV. The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation. J. Mech. Behav. Biomed. Mater.4, 1554–1558 (2011).
  • Schwiedrzik JJ , ZyssetPK. The influence of yield surface shape and damage in the depth-dependent response of bone tissue to nanoindentation using spherical and Berkovich indenters. Comput. Methods Biomech. Biomed. Engin. doi:https://doi.org/10.1080/10255842.818665 (2013) ( Epub ahead of print).
  • Carnelli D , LucchiniR, PonzoniMet al. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. J. Biomech.44, 1852–1858 (2011).
  • Paietta RC , CampbellSE, FergusonVL. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone. J. Biomech.44, 285–290 (2011).
  • Lucchini R , CarnelliD, PonzoniMet al. Role of damage mechanics in nanoindentation of lamellar bone at multiple sizes: experiments and numerical modelling. J. Mech. Behav. Biomed. Mater.4, 1852–1863 (2011).
  • Van Meerbeek B , WillemsG, CelisJPet al. Assessment by nano-indentation of the hardness and elasticity of the resin–dentin bonding area. J. Dent. Res.72, 1434–1442 (1993).
  • Angker L , NockoldsC, SwainMVet al. Correlating the mechanical properties to the mineral content of carious dentine – a comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals. Arch. Oral Biol.49, 369–378 (2004).
  • Arends J , RubenJ, JongebloedWL. Dentine caries in vivo. Combined scanning electron microscopic and microradiographic investigation. Caries Res.23, 36–41 (1989).
  • Featherstone JD , ten CateJM, ShariatiMet al. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res.17, 385–391 (1983).
  • Kodaka T , DebariK, YamadaMet al. Correlation between microhardness and mineral content in sound human enamel. Caries Res.26, 139–141 (1992).
  • Ten Bosch JJ , Angmar-ManssonB. A review of quantitative methods for studies of mineral content of intra-oral caries lesions. J. Dent. Res.70, 2–14 (1991).
  • Angker L , SwainMW, KilpatrickN. Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. J. Biomech.38, 1535–1542 (2005).
  • Mahoney E , IsmailFS, KilpatrickNet al. Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur. J. Oral Sci.112, 497–502 (2004).
  • Marshall GW Jr , BaloochM, GallagherRRet al. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J. Biomed. Mater. Res.54, 87–95 (2001).
  • Toparli M , KoksalNS. Hardness and yield strength of dentin from simulated nano-indentation tests. Comput. Methods Programs Biomed.77, 253–257 (2005).
  • Bembey AK , OyenML, KoCCet al. Elastic modulus and mineral density of dentine and enamel in natural caries lesions. MRS Proc.874, 125–130 (2005).
  • Spears IR . A three-dimensional finite element model of prismatic enamel: a re-appraisal of the data on the Young's modulus of enamel. J. Dent. Res.76, 1690–1697 (1997).
  • Ben-Nissan B , ChoiAH. Sol-Gel production of bioactive nanocoatings for medical applications – part I: an introduction. Nanomedicine1, 311–319 (2006).
  • Choi AH , Ben-NissanB. Sol-gel production of bioactive nanocoatings for medical application – part II: current research and development. Nanomedicine2, 51–61 (2007).
  • Roest R . Interfacial characterisation of Sol-Gel derived coatings of hydroxyapatite and zirconia thin films with anodised titanium substrates [PhD dissertation]. University of Technology, Sydney, Australia (2008).
  • Ben-Nissan B , PezzottiG. Bioceramics: processing routes and mechanical evaluation. J. Ceram. Soc. Japan110, 601–608 (2002).
  • Fischer-Cripps AC . A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng. A385, 74–82 (2004).
  • Latella BA , GanBK, BarbéCJet al. Nanoindentation hardness, Young's modulus, and creep behaviour of organic–inorganic silica-based Sol-Gel thin films on copper. J. Mater. Res.23, 2357–2365 (2008).
  • Bendavid A , MartinPJ, ComteCet al. The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition. Diam. Relat. Mater.16, 1616–1622 (2007).
  • Dearnaley G , ArpsJH. Biomedical applications of diamond-like carbon (DLC) coatings: a review. Surf. Coat. Technol.200, 2518–2524 (2005).
  • Faisal NH , AhmedR, FuYQet al. Influence of indenter shape on DLC film failure during multiple load cycle nanoindentation. Mater. Sci. Technol.28, 1186–1197 (2012).
  • Wei C , YangJF. A finite element analysis of the effects of residual stress, substrate roughness and non-uniform stress distribution on the mechanical properties of diamond-like carbon films. Diam. Relat. Mater.20, 839–844 (2011).
  • Ben-Nissan B , ChoiAH, BendavidA. Mechanical properties of inorganic biomedical thin films and their corresponding testing methods. Surf. Coat. Technol.233, 39–48 (2013).
  • Kot M , RakowskiW, LacknerJMet al. Analysis of spherical indentations of coating-substrate systems: experiments and finite element modelling. Mater. Design43, 99–111 (2013).
  • Kataria S , GoyalS, DashSet al. Evaluation of nano-mechanical properties of hard coatings on a soft substrate. Thin Solid Films52, 297–303 (2012).
  • Zhang C , LengY, ChenJ. Elastic and plastic behaviour of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate. Biomaterials22, 1357–1363 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.