654
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoparticles Functionalized with Supramolecular Host–Guest Systems for Nanomedicine and Healthcare

, , , , &
Pages 1493-1514 | Published online: 21 May 2015

References

  • Chinai JM , TaylorAB , RynoLMet al. Molecular recognition of insulin by a synthetic receptor . J. Am. Chem. Soc.133 ( 23 ), 8810 – 8813 ( 2011 ).
  • Liu Z , RobinsonJT , TabakmanSM , YangK , DaiH . Carbon materials for drug delivery & cancer therapy . Mater. Today14 ( 7–8 ), 316 – 323 ( 2011 ).
  • Kang S-G , ZhouG , YangPet al. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C-82(OH)(22) and its implication for de novo design of nanomedicine . Proc. Natl Acad. Sci. USA109 ( 38 ), 15431 – 15436 ( 2012 ).
  • Feng L , WuL , QuX . New horizons for diagnostics and therapeutic applications of graphene and graphene oxide . Adv. Mater.25 ( 2 ), 168 – 186 ( 2013 ).
  • Cabral H , MatsumotoY , MizunoKet al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size . Nat. Nanotechnol.6 ( 12 ), 815 – 823 ( 2011 ).
  • Ashley CE , CarnesEC , PhillipsGKet al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers . Nat. Mater.10 ( 5 ), 389 – 397 ( 2011 ).
  • Zheng YB , KiralyB , HuangTJ . Molecular machines drive smart drug delivery . Nanomedicine5 ( 9 ), 1309 – 1312 ( 2010 ).
  • Lee JW , SamalS , SelvapalamN , KimHJ , KimK . Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry . Acc. Chem. Res.36 ( 8 ), 621 – 630 ( 2003 ).
  • Jon SY , SelvapalamN , OhDHet al. Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril . J. Am. Chem. Soc.125 ( 34 ), 10186 – 10187 ( 2003 ).
  • Jeon YJ , KimSY , KoYH , SakamotoS , YamaguchiK , KimK . Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug . Org. Biomol. Chem.3 ( 11 ), 2122 – 2125 ( 2005 ).
  • Kim SK , ParkKM , SinghaKet al. Galactosylated cucurbituril-inclusion polyplex for hepatocyte-targeted gene delivery . Chem. Commun.46 ( 5 ), 692 – 694 ( 2010 ).
  • Tan L-L , LiH , TaoY , ZhangSX-A , WangB , YangY-W . Pillar[5]arene-based supramolecular organic frameworks for highly selective CO2-capture at ambient conditions . Adv. Mater.26 ( 41 ), 7027 – 7031 ( 2014 ).
  • Zheng B , WangF , DongS , HuangF . Supramolecular polymers constructed by crown ether-based molecular recognition . Chem. Soc. Rev.41 ( 5 ), 1621 – 1636 ( 2012 ).
  • Guo D-S , LiuY . Calixarene-based supramolecular polymerization in solution . Chem. Soc. Rev.41 ( 18 ), 5907 – 5921 ( 2012 ).
  • Walker S , OunR , McinnesFJ , WheateNJ . The potential of cucurbit[n]urils in drug delivery . Isr. J. Chem.51 ( 5–6 ), 616 – 624 ( 2011 ).
  • Zhang J , MaPX . Host–guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications . Nano Today5 ( 4 ), 337 – 350 ( 2010 ).
  • Gulder T , BaranPS . Strained cyclophane natural products: macrocyclization at its limits . Nat. Prod. Rep.29 ( 8 ), 899 – 934 ( 2012 ).
  • Xue M , YangY , ChiX , ZhangZ , HuangF . Pillararenes, a new class of macrocycles for supramolecular chemistry . Acc. Chem. Res.45 ( 8 ), 1294 – 1308 ( 2012 ).
  • Wile BM , StradiottoM . Silver-catalyzed hydrosilylation of aldehydes . Chem. Commun. ( 39 ), 4104 – 4106 ( 2006 ).
  • Wessels JM , NothoferH-G , FordWEet al. Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies . J. Am. Chem. Soc.126 ( 10 ), 3349 – 3356 ( 2004 ).
  • Lioubashevski O , ChegelVI , PatolskyF , KatzE , WillnerI . Enzyme-catalyzed bio-pumping of electrons into Au-nanoparticles: a surface plasmon resonance and electrochemical study . J. Am. Chem. Soc.126 ( 22 ), 7133 – 7143 ( 2004 ).
  • Du BA , LiZP , LiuCH . One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique . Angew. Chem. Int. Ed.45 ( 47 ), 8022 – 8025 ( 2006 ).
  • Gorman BA , FrancisPS , DunstanDE , BarnettNW . Tris (2, 2′-bipyridyl) ruthenium (II) chemiluminescence enhanced by silver nanoparticles . Chem. Commun. ( 4 ), 395 – 397 ( 2007 ).
  • Sun TM , ZhangYS , PangB , HyunDC , YangMX , XiaYN . Engineered nanoparticles for drug delivery in cancer therapy . Angew. Chem. Int. Ed.53 ( 46 ), 12320 – 12364 ( 2014 ).
  • Dreaden EC , AlkilanyAM , HuangX , MurphyCJ , El-SayedMA . The golden age: gold nanoparticles for biomedicine . Chem. Soc. Rev.41 ( 7 ), 2740 – 2779 ( 2012 ).
  • Li H , BianY . Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+ . Nanotechnology20 ( 14 ), 145502 ( 2009 ).
  • Xiong D , LiH . Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water . Nanotechnology19 ( 46 ), 465502 ( 2008 ).
  • Li H , LiF , HanC , CuiZ , XieG , ZhangA . Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles . Sens. Actuators B145 ( 1 ), 194 – 199 ( 2010 ).
  • Benyettou F , MilosevicI , LalatonneYet al. Toward theranostic nanoparticles: CB[7]-functionalized iron oxide for drug delivery and MRI . J. Mater. Chem. B1 ( 38 ), 5076 – 5082 ( 2013 ).
  • Amendola V , MeneghettiM , GranozziGet al. Top–down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation . J. Mater. Chem.21 ( 11 ), 3803 – 3813 ( 2011 ).
  • Gupta AK , GuptaM . Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications . Biomaterials26 ( 18 ), 3995 – 4021 ( 2005 ).
  • Benyettou F , ChebbiI , MotteL , SeksekO . Magnetoliposome for alendronate delivery . J. Mater. Chem.21 ( 13 ), 4813 – 4820 ( 2011 ).
  • De Montferrand C , LalatonneY , BonninD , MotteL , MonodP . Non-linear magnetic behavior around zero field of an assembly of superparamagnetic nanoparticles . Analyst137 ( 10 ), 2304 – 2308 ( 2012 ).
  • Lin W , HyeonT , LanzaGM , ZhangM , MeadeTJ . Magnetic nanoparticles for early detection of cancer by magnetic resonance imaging . MRS Bull.34 ( 06 ), 441 – 448 ( 2009 ).
  • Barkalina N , JonesC , CowardK . Mesoporous silica nanoparticles: a potential targeted delivery vector for reproductive biology?Nanomedicine9 ( 5 ), 557 – 560 ( 2014 ).
  • Klajn R , StoddartJF , GrzybowskiBA . Nanoparticles functionalised with reversible molecular and supramolecular switches . Chem. Soc. Rev.39 ( 6 ), 2203 – 2237 ( 2010 ).
  • Li Z , BarnesJC , BosoyA , StoddartJF , ZinkJI . Mesoporous silica nanoparticles in biomedical applications . Chem. Soc. Rev.41 ( 7 ), 2590 – 2605 ( 2012 ).
  • Nadrah P , PlaninšekO , GaberščekM . Stimulus-responsive mesoporous silica particles . J. Mater. Sci.49 ( 2 ), 481 – 495 ( 2013 ).
  • Yang YW , SunYL , SongN . Switchable host–guest systems on surfaces . Acc. Chem. Res.47 ( 7 ), 1950 – 1960 ( 2014 ).
  • Li H , YangY-W . Gold nanoparticles functionalized with supramolecular macrocycles . Chin. Chem. Lett.24 ( 7 ), 545 – 552 ( 2013 ).
  • Yang YW . Towards biocompatible nanovalves based on mesoporous silica nanoparticles . Medchemcomm2 ( 11 ), 1033 – 1049 ( 2011 ).
  • Wang L , LiLL , FanYS , WangH . Host–guest supramolecular nanosystems for cancer diagnostics and therapeutics . Adv. Mater.25 ( 28 ), 3888 – 3898 ( 2013 ).
  • Xie Y , WangX , HanXet al. Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs . J. Raman Spectrosc.42 ( 5 ), 945 – 950 ( 2011 ).
  • Barooah N , BhasikuttanAC , SudarsanV , ChoudhurySD , PalH , MohantyJ . Surface functionalized silver nanoparticle conjugates: demonstration of uptake and release of a phototherapeutic porphyrin dye . Chem. Commun.47 ( 32 ), 9182 – 9184 ( 2011 ).
  • Nguyen TD , TsengHR , CelestrePCet al. A reversible molecular valve . Proc. Natl Acad. Sci. USA102 ( 29 ), 10029 – 10034 ( 2005 ).
  • Khashab NM , TrabolsiA , LauYAet al. Redox- and pH-controlled mechanized nanoparticles . Eur. J. Org. Chem.2009 ( 11 ), 1669 – 1673 ( 2009 ).
  • Luo Z , DingX , HuYet al. Engineering a hollow nanocontainer platform with multifunctional molecular machines for tumor-targeted therapy in vitro and in vivo . ACS Nano7 ( 11 ), 10271 – 10284 ( 2013 ).
  • Zheng YB , HaoQ , YangY-W , KiralyB , ChiangIK , HuangTJ . Light-driven artificial molecular machines . J. Nanophotonics4 ( 1 ), 042501 ( 2010 ).
  • Ferris DP , ZhaoY-L , KhashabNM , KhatibHA , StoddartJF , ZinkJI . Light-operated mechanized nanoparticles . J. Am. Chem. Soc.131 ( 5 ), 1686 – 1688 ( 2009 ).
  • Jog PV , GinMS . A light-gated synthetic ion channel . Org. Lett.10 ( 17 ), 3693 – 3696 ( 2008 ).
  • Murakami H , KawabuchiA , MatsumotoR , IdoT , NakashimaN . A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes . J. Am. Chem. Soc.127 ( 45 ), 15891 – 15899 ( 2005 ).
  • Yan H , TehC , SreejithSet al. Functional mesoporous silica nanoparticles for photothermal‐controlled drug delivery in vivo . Angew. Chem. Int. Ed.51 ( 33 ), 8373 – 8377 ( 2012 ).
  • Sun YL , YangBJ , ZhangSX , YangYW . Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve . Chemistry18 ( 30 ), 9212 – 9216 ( 2012 ).
  • Li Q-L , WangL , QiuX-Let al. Stimuli-responsive biocompatible nanovalves based on β-cyclodextrin modified poly(glycidyl methacrylate) . Polym. Chem.5 ( 10 ), 3389 – 3395 ( 2014 ).
  • Wang M , ChenT , DingC , FuJ . Mechanized silica nanoparticles based on reversible bistable [2]pseudorotaxanes as supramolecular nanovalves for multistage pH-controlled release . Chem. Commun.50 ( 39 ), 5068 – 5071 ( 2014 ).
  • Gao Y , YangC , LiuX , MaR , KongD , ShiL . A multifunctional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery . Macromol. Biosci.12 ( 2 ), 251 – 259 ( 2012 ).
  • Park C , OhK , LeeSC , KimC . Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif . Angew. Chem. Int. Ed.46 ( 9 ), 1455 – 1457 ( 2007 ).
  • Choi HS , OoyaT , LeeSCet al. pH dependence of polypseudorotaxane formation between cationic linear polyethylenimine and cyclodextrins . Macromolecules37 ( 18 ), 6705 – 6710 ( 2004 ).
  • Lee SC , ChoiHS , OoyaT , YuiN . Block-selective polypseudorotaxane formation in PEI-b-PEG-b-PEI copolymers via pH variation . Macromolecules37 ( 20 ), 7464 – 7468 ( 2004 ).
  • Sun YL , YangYW , ChenDXet al. Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release . Small9 ( 19 ), 3224 – 3229 ( 2013 ).
  • Ogoshi T , HashizumeM , YamagishiT-A , NakamotoY . Synthesis, conformational and host–guest properties of water-soluble pillar [5] arene . Chem. Commun.46 ( 21 ), 3708 – 3710 ( 2010 ).
  • Zhou Y , TanLL , LiQLet al. Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors . Chemistry20 ( 11 ), 2998 – 3004 ( 2014 ).
  • Patel K , AngelosS , DichtelWRet al. Enzyme-responsive snap-top covered silica nanocontainers . J. Am. Chem. Soc.130 ( 8 ), 2382 – 2383 ( 2008 ).
  • Sun YL , ZhouY , LiQL , YangYW . Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release . Chem. Commun.49 ( 79 ), 9033 – 9035 ( 2013 ).
  • Rapoport N , KennedyAM , SheaJE , ScaifeCL , NamK-H . Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging . Mol. Pharmaceutics7 ( 1 ), 22 – 31 ( 2009 ).
  • Husseini GA , PittWG . Micelles and nanoparticles for ultrasonic drug and gene delivery . Adv. Drug Deliv. Rev.60 ( 10 ), 1137 – 1152 ( 2008 ).
  • Lee S-F , ZhuX-M , WangY-XJet al. Ultrasound, pH, and magnetically responsive crown-ether-coated core/shell nanoparticles as drug encapsulation and release systems . ACS Appl. Mater. Interfaces5 ( 5 ), 1566 – 1574 ( 2013 ).
  • Thomas CR , FerrisDP , LeeJ-Het al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles . J. Am. Chem. Soc.132 ( 31 ), 10623 – 10625 ( 2010 ).
  • Li H , TanL-L , JiaPet al. Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods . Chem. Sci.5 ( 7 ), 2804 – 2808 ( 2014 ).
  • Lane D . Designer combination therapy for cancer . Nat. Biotechnol.24 ( 2 ), 163 – 164 ( 2006 ).
  • De Gaetano Donati K , RabagliatiR , IacovielloL , CaudaR . HIV infection, HARRT, and endothelial adhesion molecules: current perspectives . Lancet Infect. Dis.4 ( 4 ), 213 – 222 ( 2004 ).
  • Wang C , LiZ , CaoDet al. Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles . Angew. Chem. Int. Ed.51 ( 22 ), 5460 – 5465 ( 2012 ).
  • Angelos S , YangY-W , KhashabNM , StoddartJF , ZinkJI . Dual-controlled nanoparticles exhibiting and logic . J. Am. Chem. Soc.131 ( 32 ), 11344 – 11346 ( 2009 ).
  • Meng H , XueM , XiaTet al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves . J. Am. Chem. Soc.132 ( 36 ), 12690 – 12697 ( 2010 ).
  • Chen Y , ChenH , ShiJ . In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles . Adv. Mater.25 ( 23 ), 3144 – 3176 ( 2013 ).
  • Zhang Q , WangX , LiP-Zet al. Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo . Adv. Funct. Mater.24 ( 17 ), 2450 – 2461 ( 2014 ).
  • Oliveri V , D’AgataR , GiglioV , SpotoG , VecchioG . Cyclodextrin-functionalised gold nanoparticles via streptavidin: a supramolecular approach . Supramol. Chem.25 ( 8 ), 465 – 473 ( 2013 ).
  • Adeli M , HakimpoorF , ParsamaneshM , KalantariM , SobhaniZ , AttyabiF . Quantum dot-pseudopolyrotaxane supramolecules as anticancer drug delivery systems . Polymer52 ( 11 ), 2401 – 2413 ( 2011 ).
  • Luo Z , CaiK , HuYet al. Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles . Adv. Mater.24 ( 3 ), 431 – 435 ( 2012 ).
  • Adeli M , SarabiRS , FarsiRY , MahmoudiM , KalantariM . Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems . J. Mater. Chem.21 ( 46 ), 18686 – 18695 ( 2011 ).
  • Liu Y , YangYW , ChenY . Thio[2-(benzoylamino)ethylamino]-beta-CD fragment modified gold nanoparticles as recycling extractors for [60]fullerene . Chem. Commun. ( 33 ), 4208 – 4210 ( 2005 ).
  • Eftink MR , AndyML , BystromK , PerlmutterHD , KristolDS . Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests . J. Am. Chem. Soc.111 ( 17 ), 6765 – 6772 ( 1989 ).
  • Yokoyama M . Polymeric micelles as a new drug carrier system and their required considerations for clinical trials . Expert Opin. Drug Deliv.7 ( 2 ), 145 – 158 ( 2010 ).
  • Danhier F , FeronO , PreatV . To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery . J. Control. Release148 ( 2 ), 135 – 146 ( 2010 ).
  • Brule S , LevyM , WilhelmCet al. Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy . Adv. Mater.23 ( 6 ), 787 – 790 ( 2011 ).
  • Kim J , LeeJE , LeeSHet al. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery . Adv. Mater.20 ( 3 ), 478 – 483 ( 2008 ).
  • Cai K , LiJ , LuoZ , HuY , HouY , DingX . β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood . Chem. Commun.47 ( 27 ), 7719 – 7721 ( 2011 ).
  • Ta HT , DassCR , LarsonI , ChoongPFM , DunstanDE . A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy . Biomaterials30 ( 27 ), 4815 – 4823 ( 2009 ).
  • Huang C , LiM , ChenC , YaoQ . Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications . Expert Opin. Ther. Targets12 ( 5 ), 637 – 645 ( 2008 ).
  • Li JM , WangYY , ZhaoMXet al. Multifunctional QD-based co-delivery of siRNA and doxorubicin to Hela cells for reversal of multidrug resistance and real-time tracking . Biomaterials33 ( 9 ), 2780 – 2790 ( 2012 ).
  • Kim C , AgastiSS , ZhuZ , IsaacsL , RotelloVM . Recognition-mediated activation of therapeutic gold nanoparticles inside living cells . Nat. Chem.2 ( 11 ), 962 – 966 ( 2010 ).
  • Lan Y , LohXJ , GengJ , WalshZ , SchermanOA . A supramolecular route towards core-shell polymeric microspheres in water via cucurbit[8]uril complexation . Chem. Commun.48 ( 70 ), 8757 – 8759 ( 2012 ).
  • Sokolov BP , CadetJL . Methamphetamine causes alterations in the map kinase-related pathways in the brains of mice that display increased aggressiveness . Neuropsychopharmacology31 ( 5 ), 956 – 966 ( 2006 ).
  • Terstappen GC , SchlupenC , RaggiaschiR , GaviraghiG . Target deconvolution strategies in drug discovery . Nat. Rev. Drug Discov.6 ( 11 ), 891 – 903 ( 2007 ).
  • Dufva M , ChristensenCB . Diagnostic and analytical applications of protein microarrays . Expert Rev. Proteomics2 ( 1 ), 41 – 48 ( 2005 ).
  • Jones RB , GordusA , KrallJA , MacbeathG . A quantitative protein interaction network for the ErbB receptors using protein microarrays . Nature439 ( 7073 ), 168 – 174 ( 2006 ).
  • Anderson KS , RamachandranN , WongJet al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer . J. Proteome Res.7 ( 4 ), 1490 – 1499 ( 2008 ).
  • Hudson ME , PozdnyakovaI , HainesK , MorG , SnyderM . Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays . Proc. Natl Acad. Sci. USA104 ( 44 ), 17494 – 17499 ( 2007 ).
  • Rybtchinski B . Adaptive supramolecular nanomaterials based on strong noncovalent interactions . ACS Nano5 ( 9 ), 6791 – 6818 ( 2011 ).
  • Uhlenheuer DA , PetkauK , BrunsveldL . Combining supramolecular chemistry with biology . Chem. Soc. Rev.39 ( 8 ), 2817 – 2826 ( 2010 ).
  • Nguyen HD , DangDT , Van DongenJLJ , BrunsveldL . Protein dimerization induced by supramolecular interactions with cucurbit[8]uril . Angew. Chem. Int. Ed.49 ( 5 ), 895 – 898 ( 2010 ).
  • Heitmann LM , TaylorAB , HartPJ , UrbachAR . Sequence-specific recognition and cooperative dimerization of n-terminal aromatic peptides in aqueous solution by a synthetic host . J. Am. Chem. Soc.128 ( 38 ), 12574 – 12581 ( 2006 ).
  • Yang L , Gomez-CasadoA , YoungJFet al. Reversible and oriented immobilization of ferrocene-modified proteins . J. Am. Chem. Soc.134 ( 46 ), 19199 – 19206 ( 2012 ).
  • Gonzalez-Campo A , BraschM , UhlenheuerDAet al. Supramolecularly oriented immobilization of proteins using cucurbit[8]uril . Langmuir28 ( 47 ), 16364 – 16371 ( 2012 ).
  • Yao Y , ZhouY , DaiJ , YueS , XueM . Host–guest recognition-induced color change of water-soluble pillar[5]arene modified silver nanoparticles for visual detection of spermine analogues . Chem. Commun.50 ( 7 ), 869 – 871 ( 2014 ).
  • Wang L , LeiJ , MaR , JuH . Host–guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules . Anal. Chem.85 ( 13 ), 6505 – 6510 ( 2013 ).
  • Frenich AG , ZamoraDP , VidalJLM , GaleraMM . Standardization of SPE signals in multicomponent analysis of three benzimidazolic pesticides by spectrofluorimetry . Anal. Chim. Acta477 ( 2 ), 211 – 222 ( 2003 ).
  • Galera MM , ZamoraDP , VidalJLMet al. Determination of carbendazim, thiabendazole and fuberidazole using a net analyte signal-based method . Talanta59 ( 6 ), 1107 – 1116 ( 2003 ).
  • Xiong J , HuB . Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection . J. Chromatogr. A1193 ( 1–2 ), 7 – 18 ( 2008 ).
  • Likas DT , TsiropoulosNG , MiliadisGE . Rapid gas chromatographic method for the determination of famoxadone, trifloxystrobin and fenhexamid residues in tomato, grapeand wine samples . J. Chromatogr. A1150 ( 1–2 ), 208 – 214 ( 2007 ).
  • Pang GF , FanCL , LiuYMet al. Multi-residue method for the determination of 450 pesticide residues in honey, fruit juice and wine by double-cartridge solid-phase extraction/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry . Food Addit. Contam.23 ( 8 ), 777 – 810 ( 2006 ).
  • Zacharis CK , ChristophoridisC , FytianosK . Vortex-assisted liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the determination of organophosphate pesticides in environmental water samples and wines . J. Sep. Sci.35 ( 18 ), 2422 – 2429 ( 2012 ).
  • Zheng Y , PaytonJ , ChungC . Surface-enhanced raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments . Nano Lett.11 ( 8 ), 3447 – 3452 ( 2011 ).
  • Zheng YB , KiralyB , WeissPS , HuangTJ . Molecular plasmonics for biology and nanomedicine . Nanomedicine7 ( 5 ), 751 – 770 ( 2012 ).
  • Abalde-Cela S , Aldeanueva-PotelP , Mateo-MateoC , Rodriguez-LorenzoL , Alvarez-PueblaRA , Liz-MarzanLM . Surface-enhanced raman scattering biomedical applications of plasmonic colloidal particles . J. R. Soc. Interface7 ( Suppl. 4 ), S435 – S450 ( 2010 ).
  • Alvarez-Puebla RA , Liz-MarzanLM . SERS-based diagnosis and biodetection . Small6 ( 5 ), 604 – 610 ( 2010 ).
  • Haynes CL , McfarlandAD , Van DuyneRP . Surface-enhanced raman spectroscopy . Anal. Chem.77 ( 17 ), 338A – 346A ( 2005 ).
  • Brus L . Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule raman spectroscopy . Acc. Chem. Res.41 ( 12 ), 1742 – 1749 ( 2008 ).
  • Kneipp K , MoskovitsM , KneippH . Surface-enhanced raman scattering . Phys. Today60 ( 11 ), 40 – 46 ( 2007 ).
  • Alvarez-Puebla R , Liz-MarzánLM , Garciía De AbajoFJ . Light concentration at the nanometer scale . J. Phys. Chem. Lett.1 ( 16 ), 2428 – 2434 ( 2010 ).
  • Rodríguez-Lorenzo L , Alvarez-PueblaRA , Pastoriza-SantosIet al. Zeptomol detection through controlled ultrasensitive surface-enhanced raman scattering . J. Am. Chem. Soc.131 ( 13 ), 4616 – 4618 ( 2009 ).
  • Strickland AD , BattCA . Detection of carbendazim by surface-enhanced raman scattering using cyclodextrin inclusion complexes on gold nanorods . Anal. Chem.81 ( 8 ), 2895 – 2903 ( 2009 ).
  • Pathem BK , ZhengYB , MortonSet al. Photoreaction of matrix-isolated dihydroazulene-functionalized molecules on Au{111} . Nano Lett.13 ( 2 ), 337 – 343 ( 2013 ).
  • Pathem BK , ZhengYB , PaytonJLet al. Effect of tether conductivity on the efficiency of photoisomerization of azobenzene-functionalized molecules on Au{111} . J. Phys. Chem. Lett.3 ( 17 ), 2388 – 2394 ( 2012 ).
  • Zheng YB , PaytonJL , ChungCHet al. Surface-enhanced raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments . Nano Lett.11 ( 8 ), 3447 – 3452 ( 2011 ).
  • Abalde-Cela S , Hermida-RamóNJM , Contreras-CarballadaPet al. SERS chiral recognition and quantification of enantiomers through cyclodextrin supramolecular complexation . Chemphyschem12 ( 8 ), 1529 – 1535 ( 2011 ).
  • Roldan ML , Sanchez-CortesS , Garcia-RamosJV , DomingoC . Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study . Phys. Chem. Chem. Phys.14 ( 14 ), 4935 – 4941 ( 2012 ).
  • Wustholz KL , HenryA-I , McmahonJMet al. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced raman spectroscopy . J. Am. Chem. Soc.132 ( 31 ), 10903 – 10910 ( 2010 ).
  • Lim D-K , JeonK-S , KimHM , NamJ-M , SuhYD . Nanogap-engineerable raman-active nanodumbbells for single-molecule detection . Nat. Mater.9 ( 1 ), 60 – 67 ( 2010 ).
  • Le Ru E , EtchegoinP . Sub-wavelength localization of hot-spots in SERS . Chem. Phys. Lett.396 ( 4 ), 393 – 397 ( 2004 ).
  • Sztainbuch IW . The effects of Au aggregate morphology on surface-enhanced raman scattering enhancement . J. Chem. Phys.125 ( 12 ), 124707 ( 2006 ).
  • Hao E , SchatzGC . Electromagnetic fields around silver nanoparticles and dimers . J. Chem. Phys.120 ( 1 ), 357 – 366 ( 2003 ).
  • Sardar R , HeapTB , Shumaker-ParryJS . Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach . J. Am. Chem. Soc.129 ( 17 ), 5356 – 5357 ( 2007 ).
  • Li W , CamargoPH , LuX , XiaY . Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering . Nano Lett.9 ( 1 ), 485 – 490 ( 2008 ).
  • Tao CA , AnQ , ZhuWet al. Cucurbit[n]urils as a SERS hot-spot nanocontainer through bridging gold nanoparticles . Chem. Commun.47 ( 35 ), 9867 – 9869 ( 2011 ).
  • Doering WE , NieS . Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement . J. Phys. Chem. B106 ( 2 ), 311 – 317 ( 2002 ).
  • Taylor RW , LeeT-C , SchermanOAet al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue” . ACS Nano5 ( 5 ), 3878 – 3887 ( 2011 ).
  • Kasera S , BiedermannF , BaumbergJJ , SchermanOA , MahajanS. . Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs . Nano Lett.12 ( 11 ), 5924 – 5928 ( 2012 ).
  • Ghadiali JE , StevensMM . Enzyme‐responsive nanoparticle systems . Adv. Mater.20 ( 22 ), 4359 – 4363 ( 2008 ).
  • De La Rica R , VeldersAH . Supramolecular Au nanoparticle assemblies as optical probes for enzyme-linked immunoassays . Small7 ( 1 ), 66 – 69 ( 2011 ).
  • Xue X , WangF , LiuX . One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates . J. Am. Chem. Soc.130 ( 11 ), 3244 – 3245 ( 2008 ).
  • Liu J , MendozaS , RománE , LynnMJ , XuR , KaiferAE . Cyclodextrin-modified gold nanospheres. Host–guest interactions at work to control colloidal properties . J. Am. Chem. Soc.121 ( 17 ), 4304 – 4305 ( 1999 ).
  • Xiong D , ChenM , LiH . Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes . Chem. Commun. ( 7 ), 880 – 882 ( 2008 ).
  • Chen X , ParkerSG , ZouG , SuW , ZhangQ . β-cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers . ACS Nano4 ( 11 ), 6387 – 6394 ( 2010 ).
  • Coelho JP , Gonzalez-RubioG , DelicesAet al. Polyrotaxane-mediated self-assembly of gold nanospheres into fully reversible supercrystals . Angew. Chem. Int. Ed.53 ( 47 ), 12751 – 12755 ( 2014 ).
  • Li H , ChenDX , SunYLet al. Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles . J. Am. Chem. Soc.135 ( 4 ), 1570 – 1576 ( 2013 ).
  • Chen D-X , SunY-L , ZhangY , CuiJ-Y , ShenF-Z , YangY-W . Supramolecular self-assembly and photophysical properties of pillar[5]arene-stabilized CdTe quantum dots mediated by viologens . RSC Adv.3 ( 17 ), 5765 – 5768 ( 2013 ).
  • de la Rica R , FratilaRM , SzarpakA , HuskensJ , VeldersAH . Multivalent nanoparticle networks as ultrasensitive enzyme sensors . Angew. Chem. Int. Ed.50 ( 25 ), 5704 – 5707 ( 2011 ).
  • Huang T , MengF , QiL . Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced raman scattering . J. Phys. Chem. C113 ( 31 ), 13636 – 13642 ( 2009 ).
  • Olson MA , CoskunA , KlajnRet al. Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions . Nano Lett.9 ( 9 ), 3185 – 3190 ( 2009 ).
  • Zhou S-Y , SongN , LiuS-X , ChenD-X , JiaQ , YangY-W . Separation and preconcentration of gold and palladium ions with a carboxylated pillar[5]arene derived sorbent prior to their determination by flow injection FAAS . Microchim. Acta181 ( 13–14 ), 1551 – 1556 ( 2014 ).
  • Saaid M , SaadB , RahmanIA , AliAS , SalehMI . Extraction of biogenic amines using sorbent materials containing immobilized crown ethers . Talanta80 ( 3 ), 1183 – 1190 ( 2010 ).
  • Liu D , SongN , ChengY-C , ChenD-X , JiaQ , YangY-W . Pillarene functionalized polymer monolithic column for the solid-phase microextraction preconcentration of parabens . RSC Adv.4 ( 90 ), 49153 – 49160 ( 2014 ).
  • Chalasani R , VasudevanS . Cyclodextrin functionalized magnetic iron oxide nanocrystals: a host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media . J. Mater. Chem.22 ( 30 ), 14925 – 14931 ( 2012 ).
  • Tian M-M , ChenD-X , SunY-L , YangY-W , JiaQ . Pillararene-functionalized Fe3O4 nanoparticles as magnetic solid-phase extraction adsorbent for pesticide residue analysis in beverage samples . RSC Adv.3 ( 44 ), 22111 – 22119 ( 2013 ).
  • Yi R , YeG , PanD , WuF , WenM , ChenJ . Novel core–shell structured superparamagnetic microspheres decorated with macrocyclic host molecules for specific recognition and magnetic removal of Pb(II) . J. Mater. Chem. A2 ( 19 ), 6840 – 6846 ( 2014 ).
  • Chalasani R , VasudevanS . Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies . ACS Nano7 ( 5 ), 4093 – 4104 ( 2013 ).
  • Zheng YB , PathemBK , HohmanJN , ThomasJC , KimM , WeissPS . Photoresponsive molecules in well-defined nanoscale environments . Adv. Mater.25 ( 3 ), 302 – 312 ( 2013 ).
  • Zheng YB , PaytonJL , SongT-Bet al. Surface-enhanced raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: flat versus curved substrates . Nano Lett.12 ( 10 ), 5362 – 5368 ( 2012 ).
  • Pathem BK , ClaridgeSA , ZhengYB , WeissPS . Molecular switches and motors on surfaces . Annu. Rev. Phys. Chem.64 ( 1 ), 605 – 630 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.