390
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Lung Cancer Nanomedicine: Potentials and Pitfalls

&
Pages 3203-3212 | Published online: 16 Oct 2015

References

  • Ferlay J , SoerjomataramI , ErvikMet al. GLOBOCAN 2012 v1. 0. Cancer incidence and mortality worldwide: IARC CancerBase . http://globocan.iarc.fr/Default.aspx .
  • Network CGaR . Comprehensive molecular profiling of lung adenocarcinoma . Nature511 ( 7511 ), 543 – 550 ( 2014 ).
  • Jett JR , CarrLL . Targeted therapy for non–small cell lung cancer . Am. J. Respir. Crit. Care Med.188 ( 8 ), 907 – 912 ( 2013 ).
  • Chen Z , FillmoreCM , HammermanPS , KimCF , WongK-K . Non-small-cell lung cancers: a heterogeneous set of diseases . Nat. Rev. Cancer14 ( 8 ), 535 – 546 ( 2014 ).
  • Kauczor H-U , BonomoL , GagaMet al. ESR/ERS white paper on lung cancer screening . Eur. Respir. J.ERJ-00330 – 02015 ( 2015 ).
  • Collins LG , HainesC , PerkelR , EnckRE . Lung cancer: diagnosis and management . Am. Fam. Physician75 ( 1 ), 56 – 63 ( 2007 ).
  • Peer D , KarpJM , HongS , FarokhzadOC , MargalitR , LangerR . Nanocarriers as an emerging platform for cancer therapy . Nat. Nanotechnol.2 ( 12 ), 751 – 760 ( 2007 ).
  • Duncan R , GasparR . Nanomedicine (s) under the microscope . Mol. Pharm.8 ( 6 ), 2101 – 2141 ( 2011 ).
  • Schütz CA , Juillerat-JeanneretL , MuellerH , LynchI , RiedikerM . Therapeutic nanoparticles in clinics and under clinical evaluation . Nanomedicine8 ( 3 ), 449 – 467 ( 2013 ).
  • Wagner V , DullaartA , BockA-K , ZweckA . The emerging nanomedicine landscape . Nat. Biotechnol.24 ( 10 ), 1211 – 1217 ( 2006 ).
  • Wang AZ , LangerR , FarokhzadOC . Nanoparticle delivery of cancer drugs . Annu. Rev. Med.63 , 185 – 198 ( 2012 ).
  • Doane TL , BurdaC . The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy . Chem. Soc. Rev.41 ( 7 ), 2885 – 2911 ( 2012 ).
  • Sung JC , PulliamBL , EdwardsDA . Nanoparticles for drug delivery to the lungs . Trends Biotechnol.25 ( 12 ), 563 – 570 ( 2007 ).
  • Van Rijt SH , BeinT , MeinersS . Medical nanoparticles for next generation drug delivery to the lungs . Eur. Respir. J.44 ( 3 ), 765 – 774 ( 2014 ).
  • Choi HS , AshitateY , LeeJHet al. Rapid translocation of nanoparticles from the lung airspaces to the body . Nat. Biotech.28 ( 12 ), 1300 – 1303 ( 2010 ).
  • Lu X , ZhuT , ChenC , LiuY . Right or left: the role of nanoparticles in pulmonary diseases . Int. J. Mol. Sci.15 ( 10 ), 17577 – 17600 ( 2014 ).
  • Ruge CA , KirchJ , LehrC-M . Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges . Lancet Respir. Med.1 ( 5 ), 402 – 413 ( 2013 ).
  • Thorley AJ , TetleyTD . New perspectives in nanomedicine . Pharmacol. Ther.140 ( 2 ), 176 – 185 ( 2013 ).
  • Ozeki T , TagamiT . Drug/polymer nanoparticles prepared using unique spray nozzles and recent progress of inhaled formulation . Asian J. Pharm. Sci.9 ( 5 ), 236 – 243 ( 2014 ).
  • Howell M , WangC , MahmoudA , HellermannG , MohapatraS , MohapatraS . Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases . Drug Deliv. Transl. Res.3 ( 4 ), 352 – 363 ( 2013 ).
  • Babu A , TempletonAK , MunshiA , RameshR . Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges . J. Nanomater.2013 , 14 ( 2013 ).
  • Sukumar UK , BhushanB , DubeyP , MataiI , SachdevA , PackirisamyG . Emerging applications of nanoparticles for lung cancer diagnosis and therapy . Int. Nano Lett.3 ( 1 ), 1 – 17 ( 2013 ).
  • Key J , KimY-S , TatulliFet al. Opportunities for nanotheranosis in lung cancer and pulmonary metastasis . Clin. Transl. Imaging2 ( 5 ), 427 – 437 ( 2014 ).
  • Chandolu V , R DassC . Treatment of lung cancer using nanoparticle drug delivery systems . Curr. Drug Disc. Technol.10 ( 2 ), 170 – 176 ( 2013 ).
  • Badrzadeh F , Rahmati-YamchiM , BadrzadehKet al. Drug delivery and nanodetection in lung cancer . Artif. Cells Nanomed. Biotechnol.1 – 17 ( 2014 ) ( Epub ahead of print ).
  • Bandyopadhyay A , DasT , YeasminS . Nanoparticles in Lung Cancer Therapy: Recent Trends . Springer , NNY, USA ( 2015 ).
  • Kim Y-D , ParkT-E , SinghBet al. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy . Nanomedicine10 ( 7 ), 1165 – 1188 ( 2015 ).
  • Fujita Y , KuwanoK , OchiyaT . Development of small RNA delivery systems for lung cancer therapy . Int. J. Mol. Sci.16 ( 3 ), 5254 – 5270 ( 2015 ).
  • Matsumura Y , MaedaH . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs . Cancer Res.46 ( 12 Part 1 ), 6387 – 6392 ( 1986 ).
  • Gu FX , KarnikR , WangAZet al. Targeted nanoparticles for cancer therapy . Nano Today2 ( 3 ), 14 – 21 ( 2007 ).
  • Crisp JL , SavariarEN , GlasgowHL , ElliesLG , WhitneyMA , TsienRY . Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery . Mol. Cancer Ther.13 ( 6 ), 1514 – 1525 ( 2014 ).
  • Van Rijt SH , BölükbasDA , ArgyoCet al. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors . ACS Nano9 ( 3 ), 2377 – 2389 ( 2015 ).
  • Sadhukha T , WiedmannTS , PanyamJ . Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy . Biomaterials34 ( 21 ), 5163 – 5171 ( 2013 ).
  • Kim I , ByeonHJ , KimTHet al. Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer . Biomaterials34 ( 27 ), 6444 – 6453 ( 2013 ).
  • Choi SH , ByeonHJ , ChoiJSet al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer . J. Control. Release197 , 199 – 207 ( 2015 ).
  • Conde J , TianF , HernándezYet al. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models . Biomaterials34 ( 31 ), 7744 – 7753 ( 2013 ).
  • Taratula O , KuzmovA , ShahM , GarbuzenkoOB , MinkoT . Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA . J. Control. Release171 ( 3 ), 349 – 357 ( 2013 ).
  • Taratula O , GarbuzenkoOB , ChenAM , MinkoT . Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA . J. Drug Targeting19 ( 10 ), 900 – 914 ( 2011 ).
  • Lammers T , KiesslingF , HenninkWE , StormG . Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress . J. Control. Release161 ( 2 ), 175 – 187 ( 2012 ).
  • Malaney P , NicosiaSV , DavéV . One mouse, one patient paradigm: new avatars of personalized cancer therapy . Cancer Lett.344 ( 1 ), 1 – 12 ( 2014 ).
  • Khaled WT , LiuP . Cancer mouse models: past, present and future . Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.04.003 ( 2014 ) ( Epub ahead of print ).
  • Hrkach J , Von HoffD , AliMMet al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile . Sci. Transl. Med.4 ( 128 ), 128ra139 – 128ra139 ( 2012 ).
  • Talelli M , BarzM , RijckenCJ , KiesslingF , HenninkWE , LammersT . Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation . Nano Today10 ( 1 ), 93 – 117 ( 2015 ).
  • Grilley-Olson JE , KeedyVL , SandlerA , MooreDT , SocinskiMA , StinchcombeTE . A randomized Phase II study of carboplatin with weekly or every-3-week nanoparticle albumin-bound paclitaxel (abraxane) in patients with extensive-stage small cell lung cancer . Oncologist20 ( 2 ), 105 – 106 ( 2015 ).
  • Lammers PE , LuB , HornL , ShyrY , KeedyV . nab-Paclitaxel in combination with weekly carboplatin with concurrent radiotherapy in stage iii non-small cell lung cancer . Oncologist20 ( 5 ), 491 – 492 ( 2015 ).
  • Langer CJ , HirshV , KoA , RenschlerMF , SocinskiMA . Weekly nab-paclitaxel in combination with carboplatin as first-line therapy in patients with advanced non–small-cell lung cancer: analysis of safety and efficacy in patients with renal impairment . Clin. Lung Cancer16 ( 2 ), 112 – 120 ( 2014 ).
  • Barenholz YC . Doxil® – the first FDA-approved nano-drug: lessons learned . J. Control. Release160 ( 2 ), 117 – 134 ( 2012 ).
  • Koukourakis M , KoukourakiS , GiatromanolakiAet al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer . J. Clin. Oncol.17 ( 11 ), 3512 – 3521 ( 1999 ).
  • Koukourakis M , RomanidisK , FroudarakisMet al. Concurrent administration of Docetaxel and Stealth® liposomal doxorubicin with radiotherapy in non-small cell lung cancer: excellent tolerance using subcutaneous amifostine for cytoprotection . Br. J. Cancer87 ( 4 ), 385 – 392 ( 2002 ).
  • Patlakas G , BourosD , Tsantekidou-PozovaS , KoukourakisMI . Triplet chemotherapy with docetaxel, gemcitabine and liposomal doxorubicin, supported with subcutaneous amifostine and hemopoietic growth factors, in advanced non-small cell lung cancer . Anticancer Res.25 ( 2B ), 1427 – 1431 ( 2005 ).
  • Tsoutsou PG , FroudarakisME , BourosD , KoukourakisMI . Hypofractionated/accelerated radiotherapy with cytoprotection (HypoARC) combined with vinorelbine and liposomal doxorubicin for locally advanced non-small cell lung cancer (NSCLC) . Anticancer Res.28 ( 2B ), 1349 – 1354 ( 2008 ).
  • Numico G , CastiglioneF , GranettoCet al. Single-agent pegylated liposomal doxorubicin (Caelix®) in chemotherapy pretreated non-small cell lung cancer patients: a pilot trial . Lung Cancer35 ( 1 ), 59 – 64 ( 2002 ).
  • Samantas E , KalofonosH , LinardouHet al. Phase II study of pegylated liposomal doxorubicin: inactive in recurrent small-cell lung cancer a Hellenic Cooperative Oncology Group Study . Ann. Oncol.11 ( 11 ), 1395 – 1397 ( 2000 ).
  • Skubitz KM . Phase II trial of PEGylated-liposomal Doxorubicin (Doxil™) in mesothelioma 1 . Cancer Invest.20 ( 5–6 ), 693 – 699 ( 2002 ).
  • Fantini M , GianniL , SantelmoCet al. Lipoplatin treatment in lung and breast cancer . Chemother. Res. Pract.2011 , 125192 ( 2010 ).
  • Stathopoulos G , AntoniouD , DimitroulisJ , StathopoulosJ , MarosisK , MichalopoulouP . Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer . Cancer Chemother. Pharmacol.68 ( 4 ), 945 – 950 ( 2011 ).
  • Stathopoulos G , BoulikasT . Lipoplatin formulation review article . J. Drug Deliv.2012 , 581363 ( 2011 ).
  • NIH Clinical Trials Register . https://clinicaltrials.gov/ .
  • Samyang Biopharmaceuticals . www.samyangbiopharm.com/eng .
  • Kim D-W , KimS-Y , KimH-Ket al. Multicenter Phase II trial of Genexol-PM, a novel cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer . Ann. Oncol.18 ( 12 ), 2009 – 2014 ( 2007 ).
  • Kim HJ , KimKH , YunJet al. Phase II clinical trial of Genexol®(Paclitaxel) and carboplatin for patients with advanced non-small cell lung cancer . Cancer Res. Treat.43 ( 1 ), 19 – 23 ( 2011 ).
  • Ahn HK , JungM , SymSJet al. A Phase II trial of cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer . Cancer Chemother. Pharmacol.74 ( 2 ), 277 – 282 ( 2014 ).
  • Peng X-H , WangY , HuangDet al. Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles . ACS Nano5 ( 12 ), 9480 – 9493 ( 2011 ).
  • Cheng L , HuangF-Z , ChengL-Fet al. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation . Int. J. Nanomedicine9 , 921 ( 2014 ).
  • Sundarraj S , ThangamR , SujithaMV , VimalaK , KannanS . Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy . Toxicol. Appl. Pharmacol.275 ( 3 ), 232 – 243 ( 2014 ).
  • Karra N , NassarT , RipinAN , SchwobO , BorlakJ , BenitaS . Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model . Small9 ( 24 ), 4221 – 4236 ( 2013 ).
  • Yonenaga N , KenjoE , AsaiTet al. RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment . J. Control. Release160 ( 2 ), 177 – 181 ( 2012 ).
  • Liu L , LiuX , XuQet al. Self-assembled nanoparticles based on the c (RGDfk) peptide for the delivery of siRNA targeting the VEGFR2 gene for tumor therapy . Int. J. Nanomedicine9 , 3509 ( 2014 ).
  • Li J , ChenY-C , TsengY-C , MozumdarS , HuangL . Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery . J. Control. Release142 ( 3 ), 416 – 421 ( 2010 ).
  • Li J , YangY , HuangL . Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor . J. Control. Release158 ( 1 ), 108 – 114 ( 2012 ).
  • Zhang Y , KimWY , HuangL . Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy . Biomaterials34 ( 13 ), 3447 – 3458 ( 2013 ).
  • Yang Y , HuY , WangY , LiJ , LiuF , HuangL . Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung caner . Mol. Pharm.9 ( 8 ), 2280 – 2289 ( 2012 ).
  • Yang Y , LiJ , LiuF , HuangL . Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis . Mol. Ther.20 ( 3 ), 609 – 615 ( 2012 ).
  • Zhang Y , SchwerbrockNM , RogersAB , KimWY , HuangL . Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC . Mol. Ther.21 ( 8 ), 1559 – 1569 ( 2013 ).
  • Ganesh S , IyerAK , WeilerJ , MorrisseyDV , AmijiMM . Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer . Mol. Ther. Nucl. Acids2 ( 7 ), e110 ( 2013 ).
  • Ganesh S , IyerAK , MorrisseyDV , AmijiMM . Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors . Biomaterials34 ( 13 ), 3489 – 3502 ( 2013 ).
  • Guo L , FanL , RenJet al. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer . Int. J. Nanomedicine7 , 1449 ( 2012 ).
  • Taratula O , GarbuzenkoO , SavlaR , Andrew WangY , HeH , MinkoT . Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes . Curr. Drug Deliv.8 ( 1 ), 59 – 69 ( 2011 ).
  • Gray BP , McguireMJ , BrownKC . A liposomal drug platform overrides peptide ligand targeting to a cancer biomarker, irrespective of ligand affinity or density . PLoS ONE8 ( 8 ), e72938 ( 2013 ).
  • Shen J , MengQ , SuiHet al. iRGD Conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance . Mol. Pharm.11 ( 8 ), 2579 – 2591 ( 2013 ).
  • Mitchell MJ , WayneE , RanaK , SchafferCB , KingMR . TRAIL-coated leukocytes that kill cancer cells in the circulation . Proc. Natl Acad. Sci. USA111 ( 3 ), 930 – 935 ( 2014 ).
  • Guo Y , WangL , LvP , ZhangP . Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer . Oncol. Lett.9 ( 3 ), 1065 – 1072 ( 2015 ).
  • Han Y , LiY , ZhangPet al. Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy . Pharm. Dev. Technol.1 – 5 ( 2015 ) ( Epub ahead of print ).
  • Patel AR , ChouguleM , SinghM . EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer . Pharm. Res.31 ( 10 ), 2796 – 2809 ( 2014 ).
  • Alberti D , ProttiN , ToppinoAet al. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of boron neutron capture therapy in the lung cancer treatment . Nanomed. Nanotechnol. Biol. Med.11 ( 3 ), 741 – 750 ( 2015 ).
  • Morton SW , LeeMJ , DengZJet al. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways . Sci. Signal.7 ( 325 ), ra44 ( 2014 ).
  • Sarfati G , DvirT , ElkabetsM , ApteRN , CohenS . Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin . Biomaterials32 ( 1 ), 152 – 161 ( 2011 ).
  • Zhao S , ChuZ , BlancoVM , NieY , HouY , QiX . SapC–DOPS nanovesicles as targeted therapy for lung cancer . Mol. Cancer Ther.14 ( 2 ), 491 – 498 ( 2015 ).
  • Shi H , YeX , HeXet al. Au@ Ag/Au nanoparticles assembled with activatable aptamer probes as smart “nano-doctors” for image-guided cancer thermotherapy . Nanoscale6 ( 15 ), 8754 – 8761 ( 2014 ).
  • Wang C , DingC , KongMet al. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo . Biochem. Biophys. Res. Commun.410 ( 3 ), 537 – 542 ( 2011 ).
  • Chen Y , ZhuX , ZhangX , LiuB , HuangL . Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy . Mol. Ther.18 ( 9 ), 1650 – 1656 ( 2010 ).
  • Wang Y , XuZ , GuoSet al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis . Mol. Ther.21 ( 10 ), 1919 – 1929 ( 2013 ).
  • Liu J , ChuL , WangYet al. Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer . Int. J. Nanomedicine6 , 59 – 69 ( 2011 ).
  • Patel AR , ChouguleMB , LimE , FrancisKP , SafeS , SinghM . Theranostic tumor homing nanocarriers for the treatment of lung cancer . Nanomed. Nanotechnol. Biol. Med.10 ( 5 ), 1053 – 1063 ( 2014 ).
  • Yang S-G , ChangJ-E , ShinB , ParkS , NaK , ShimC-K . 99mTc-hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging . J. Mater. Chem.20 ( 41 ), 9042 – 9046 ( 2010 ).
  • Card JW , ZeldinDC , BonnerJC , NestmannER . Pulmonary applications and toxicity of engineered nanoparticles . Am. J. Physiol. Lung Cell. Mol. Physiol.295 ( 3 ), L400 – L411 ( 2008 ).
  • Schulze K , ImbeaudS , LetouzéEet al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets . Nat. Genet.47 ( 5 ), 505 – 511 ( 2015 ).
  • Suzuki H , AokiK , ChibaKet al. Mutational landscape and clonal architecture in grade II and III gliomas . Nat. Genet.47 ( 5 ), 505 – 511 ( 2015 ).
  • Rizvi NA , HellmannMD , SnyderAet al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer . Science348 ( 6230 ), 124 – 128 ( 2015 ).
  • Network CGaR . Comprehensive genomic characterization of squamous cell lung cancers . Nature489 ( 7417 ), 519 – 525 ( 2012 ).
  • Van De Wetering M , FranciesHE , FrancisJMet al. Prospective derivation of a living organoid biobank of colorectal cancer patients . Cell161 ( 4 ), 933 – 945 ( 2015 ).
  • Venditto VJ , SzokaFC . Cancer nanomedicines: so many papers and so few drugs!Adv. Drug Deliv. Rev.65 ( 1 ), 80 – 88 ( 2013 ).
  • Ozin G . Nanochemistry reproducibility . www.materialsviews.com/nanochemistry-reproducibility/ .
  • Hanahan D , WeinbergRA . Hallmarks of cancer: the next generation . Cell144 ( 5 ), 646 – 674 ( 2011 ).
  • Twyman-Saint Victor C , RechAJ , MaityAet al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer . Nature520 ( 7547 ), 373 – 377 ( 2015 ).
  • Roberts PJ , StinchcombeTE , DerCJ , SocinskiMA . Personalized medicine in non–small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor–targeted therapy?J. Clin. Oncol.28 ( 31 ), 4769 – 4777 ( 2010 ).
  • Rosenberg SA , RestifoNP . Adoptive cell transfer as personalized immunotherapy for human cancer . Science348 ( 6230 ), 62 – 68 ( 2015 ).
  • Rubio-Perez C , TamboreroD , SchroederMPet al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities . Cancer Cell27 ( 3 ), 382 – 396 ( 2015 ).
  • Stuckey DW , ShahK . Stem cell-based therapies for cancer treatment: separating hope from hype . Nat. Rev. Cancer14 ( 10 ), 683 – 691 ( 2014 ).
  • Sharma P , AllisonJP . Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential . Cell161 ( 2 ), 205 – 214 ( 2015 ).
  • Fang RH , ZhangL . Combinatorial nanotherapeutics: rewiring, then killing, cancer cells . Sci. Signal.7 ( 325 ), pe13 ( 2014 ).
  • Goldberg MS . Immunoengineering: how nanotechnology can enhance cancer immunotherapy . Cell161 ( 2 ), 201 – 204 ( 2015 ).
  • Chow EK-H , HoD . Cancer nanomedicine: from drug delivery to imaging . Sci. Transl. Med.5 ( 216 ), 216rv214 – 216rv214 ( 2013 ).
  • Bach PB , MirkinJN , OliverTKet al. Benefits and harms of CT screening for lung cancer: a systematic review . JAMA307 ( 22 ), 2418 – 2429 ( 2012 ).
  • Garbuzenko OB , MainelisG , TaratulaO , MinkoT . Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention . Cancer Biol. Med.11 ( 1 ), 44 ( 2014 ).
  • Cheng CJ , TietjenGT , Saucier-SawyerJK , SaltzmanWM . A holistic approach to targeting disease with polymeric nanoparticles . Nat. Rev. Drug Discov.4 ( 4 ), 239 – 247 ( 2015 ).
  • Dawidczyk CM , KimC , ParkJHet al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines . J. Control. Release187 , 133 – 144 ( 2014 ).
  • Gould SE , JunttilaMR , De SauvageFJ . Translational value of mouse models in oncology drug development . Nat. Med.21 ( 5 ), 431 – 439 ( 2015 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.