708
Views
0
CrossRef citations to date
0
Altmetric
Review

Antibody-Targeted Biodegradable Nanoparticles for Cancer Therapy

, &
Pages 63-79 | Received 29 Jul 2015, Accepted 28 Oct 2015, Published online: 11 Dec 2015

References

  • Wang AZ , LangerR , FarokhzadOC . Nanoparticle delivery of cancer drugs . Annu. Rev. Med.63 ( 1 ), 185 – 198 ( 2012 ).
  • Fang J , NakamuraH , MaedaH . The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect . Adv. Drug Deliv. Rev.63 ( 3 ), 136 – 151 ( 2011 ).
  • Chow EK-H , HoD . Cancer nanomedicine: from drug delivery to imaging . Sci. Transl. Med.5 ( 216 ), 216rv4 ( 2013 ).
  • Lammers T , KiesslingF , HenninkWE , StormG . Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress . J. Control. Release161 ( 2 ), 175 – 187 ( 2012 ).
  • Prabhakar U , MaedaH , JainRKet al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology . Cancer Res.73 ( 8 ), 2412 – 2417 ( 2013 ).
  • Byrne JD , BetancourtT , Brannon-PeppasL . Active targeting schemes for nanoparticle systems in cancer therapeutics . Adv. Drug Deliv. Rev.60 ( 15 ), 1615 – 1626 ( 2008 ).
  • Das M , MohantyC , SahooSK . Ligand-based targeted therapy for cancer tissue . Expert Opin. Drug Deliv.6 ( 3 ), 285 – 304 ( 2009 ).
  • Arruebo M , ValladaresM , González-FernándezA . Antibody-conjugated nanoparticles for biomedical applications . J. Nanomater.2009 , 439389 ( 2009 ).
  • Cardoso MM , PecaIN , RoqueAC . Antibody-conjugated nanoparticles for therapeutic applications . Curr. Med. Chem.19 ( 19 ), 3103 – 3127 ( 2012 ).
  • Fay F , ScottCJ . Antibody-targeted nanoparticles for cancer therapy . Immunotherapy3 ( 3 ), 381 – 394 ( 2011 ).
  • Shukla AA , ThömmesJ . Recent advances in large-scale production of monoclonal antibodies and related proteins . Trends Biotechnol.28 ( 5 ), 253 – 261 ( 2010 ).
  • Flygare JA , PillowTH , AristoffP . Antibody-drug conjugates for the treatment of cancer . Chem. Biol. Drug Des.81 ( 1 ), 113 – 121 ( 2013 ).
  • Eldar-Boock A , PolyakD , ScomparinA , Satchi-FainaroR . Nano-sized polymers and liposomes designed to deliver combination therapy for cancer . Curr. Opin. Biotechnol.24 ( 4 ), 682 – 689 ( 2013 ).
  • Kamaly N , XiaoZ , ValenciaPM , Radovic-MorenoAF , FarokhzadOC . Targeted polymeric therapeutic nanoparticles: design, development and clinical translation . Chem. Soc. Rev.41 ( 7 ), 2971 – 3010 ( 2012 ).
  • Davis ME , ChenZ , ShinDM . Nanoparticle therapeutics: an emerging treatment modality for cancer . Nat. Rev. Drug Discov.7 ( 9 ), 771 – 782 ( 2008 ).
  • Hoogenboom HR . Selecting and screening recombinant antibody libraries . Nat. Biotech.23 ( 9 ), 1105 – 1116 ( 2005 ).
  • Wang W , WangEQ , BalthasarJP . Monoclonal antibody pharmacokinetics and pharmacodynamics . Clin. Pharmacol. Ther.84 ( 5 ), 548 – 558 ( 2008 ).
  • Peer D , KarpJM , HongSet al. Nanocarriers as an emerging platform for cancer therapy . Nat. Nano2 ( 12 ), 751 – 760 ( 2007 ).
  • Cheng WWK , AllenTM . Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv . J. Control. Release126 ( 1 ), 50 – 58 ( 2008 ).
  • Löfblom J , FeldwischJ , TolmachevVet al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications . FEBS Lett.584 ( 12 ), 2670 – 2680 ( 2010 ).
  • Gebauer M , SkerraA . Engineered protein scaffolds as next-generation antibody therapeutics . Curr. Opin. Chem. Biol.13 ( 3 ), 245 – 255 ( 2009 ).
  • Yu MK , ParkJ , JonS . Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy . Theranostics2 ( 1 ), 3 – 44 ( 2012 ).
  • Sapsford KE , AlgarWR , BertiLet al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology . Chem. Rev.113 ( 3 ), 1904 – 2074 ( 2013 ).
  • Kocbek P , ObermajerN , CegnarM , KosJ , KristlJ . Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody . J. Control. Release120 ( 1–2 ), 18 – 26 ( 2007 ).
  • Wiseman ME , FrankCW . Antibody adsorption and orientation on hydrophobic surfaces . Langmuir28 ( 3 ), 1765 – 1774 ( 2012 ).
  • Illum L , JonesPD , BaldwinRW , DavisSS . Tissue distribution of poly(hexyl 2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts . J. Pharm. Exp. Ther.230 ( 3 ), 733 – 736 ( 1984 ).
  • Le Droumaguet B , NicolasJ , BrambillaDet al. Versatile and efficient targeting using a single nanoparticulate platform: application to cancer and Alzheimer’s disease . ACS Nano6 ( 7 ), 5866 – 5879 ( 2012 ).
  • Xiong XY , GuoL , GongYCet al. In vitro & in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction . Eur. J. Pharm. Sci.46 ( 5 ), 537 – 544 ( 2012 ).
  • Algar WR , PrasuhnDE , StewartMHet al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry . Bioconjug. Chem.22 ( 5 ), 825 – 858 ( 2011 ).
  • Manjappa AS , ChaudhariKR , VenkatarajuMPet al. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor . J. Control. Release150 ( 1 ), 2 – 22 ( 2011 ).
  • Hu C-MJ , KaushalS , CaoHSTet al. Half-antibody functionalized lipid−polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells . Mol. Pharm.7 ( 3 ), 914 – 920 ( 2010 ).
  • Wagh A , LawB . Methods for conjugating antibodies to nanocarriers . In : Antibody-Drug Conjugates . DucryL ( Ed. ). Humana Press , NY, USA , 249 – 266 ( 2013 ).
  • Makaraviciute A , RamanavicieneA . Site-directed antibody immobilization techniques for immunosensors . Biosens. Bioelectron.50 , 460 – 471 ( 2013 ).
  • Kumar S , AaronJ , SokolovK . Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties . Nat. Protoc.3 ( 2 ), 314 – 320 ( 2008 ).
  • Li J , NgCK . Methods for nanoparticle conjugation to monoclonal antibodies . In : Antibody-Mediated Drug Delivery Systems . PathakY , BenitaS ( Eds ). John Wiley & Sons, Inc. , NJ, USA , 191 – 207 ( 2012 ).
  • Cabral H , MatsumotoY , MizunoKet al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size . Nat. Nano6 ( 12 ), 815 – 823 ( 2011 ).
  • Soo Choi H , LiuW , MisraPet al. Renal clearance of quantum dots . Nat. Biotech.25 ( 10 ), 1165 – 1170 ( 2007 ).
  • Huang YF , LiuH , XiongX , ChenY , TanW . Nanoparticle-mediated IgE-receptor aggregation and signaling in RBL mast cells . J. Am. Chem. Soc.131 ( 47 ), 17328 – 17334 ( 2009 ).
  • Wang J , TianS , PetrosRA , NapierME , DesimoneJM . The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies . J. Am. Chem. Soc.132 ( 32 ), 11306 – 11313 ( 2010 ).
  • Jiang W , KimBettyYS , RutkaJT , ChanWarrenCW . Nanoparticle-mediated cellular response is size-dependent . Nat. Nano3 ( 3 ), 145 – 150 ( 2008 ).
  • Li W , ZhangX , HaoX , JieJ , TianB . Shape design of high drug payload nanoparticles for more effective cancer therapy . Chem. Commun. (Camb.)49 ( 93 ), 10989 – 10991 ( 2013 ).
  • Kolhar P , AnselmoAC , GuptaVet al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium . Proc. Natl Acad. Sci. USA110 ( 26 ), 10753 – 10758 ( 2013 ).
  • Barua S , YooJW , KolharPet al. Particle shape enhances specificity of antibody-displaying nanoparticles . Proc. Natl Acad. Sci. USA110 ( 9 ), 3270 – 3275 ( 2013 ).
  • Moghimi SM , HunterAC , MurrayJC . Long-circulating and target-specific nanoparticles: theory to practice . Pharmacol. Rev.53 ( 2 ), 283 – 318 ( 2001 ).
  • Thakor AS , GambhirSS . Nanooncology: the future of cancer diagnosis and therapy . CA Cancer J. Clin.63 ( 6 ), 395 – 418 ( 2013 ).
  • Hu CM , FangRH , LukBT , ZhangL . Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies . Nanoscale6 ( 1 ), 65 – 75 ( 2013 ).
  • Onyskiw PJ , Eniola-AdefesoO . Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow . Langmuir29 ( 35 ), 11127 – 11134 ( 2013 ).
  • Jokerst JV , LobovkinaT , ZareRN , GambhirSS . Nanoparticle PEGylation for imaging and therapy . Nanomedicine6 ( 4 ), 715 – 728 ( 2011 ).
  • Ashley CE , CarnesEC , PhillipsGKet al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers . Nat. Mater.10 ( 6 ), 476 – 476 ( 2011 ).
  • Dunne M , ZhengJ , RosenblatJ , JaffrayDA , AllenC . APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes . J. Control. Release154 ( 3 ), 298 – 305 ( 2011 ).
  • Alexis F , PridgenE , MolnarLK , FarokhzadOC . Factors affecting the clearance and biodistribution of polymeric nanoparticles . Mol. Pharm.5 ( 4 ), 505 – 515 ( 2008 ).
  • Mura S , NicolasJ , CouvreurP . Stimuli-responsive nanocarriers for drug delivery . Nat. Mater.12 ( 11 ), 991 – 1003 ( 2013 ).
  • Torchilin VP . Recent advances with liposomes as pharmaceutical carriers . Nat. Rev. Drug Discov.4 ( 2 ), 145 – 160 ( 2005 ).
  • Nag OK , AwasthiV . Surface engineering of liposomes for stealth behavior . Pharmaceutics5 ( 4 ), 542 – 569 ( 2013 ).
  • Chang H , YehMK . Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy . Int. J. Nanomedicine7 , 49 – 60 ( 2012 ).
  • Maruyama K . Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects . Adv. Drug Deliv. Rev.63 ( 3 ), 161 – 169 ( 2011 ).
  • Sawant RR , TorchilinVP . Challenges in development of targeted liposomal therapeutics . AAPS J.14 ( 2 ), 303 – 315 ( 2012 ).
  • Deshpande PP , BiswasS , TorchilinVP . Current trends in the use of liposomes for tumor targeting . Nanomedicine (Lond.)8 ( 9 ), 1509 – 1528 ( 2013 ).
  • Park J . Liposome-based drug delivery in breast cancer treatment . Breast Cancer Res.4 ( 3 ), 95 – 99 ( 2002 ).
  • Park JW , HongK , KirpotinDBet al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery . Clin. Cancer Res.8 ( 4 ), 1172 – 1181 ( 2002 ).
  • Kirpotin DB , DrummondDC , ShaoYet al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models . Cancer Res.66 ( 13 ), 6732 – 6740 ( 2006 ).
  • Mamot C , DrummondDC , NobleCOet al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo . Cancer Res.65 ( 24 ), 11631 – 11638 ( 2005 ).
  • Elbayoumi TA , TorchilinVP . Tumor-specific antibody-mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice . Int. J. Pharm.357 ( 1–2 ), 272 – 279 ( 2008 ).
  • Sapra P , AllenTM . Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs . Cancer Res.62 ( 24 ), 7190 – 7194 ( 2002 ).
  • Koning GA , KampsJA , ScherphofGL . Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes . Cancer Detect. Prev.26 ( 4 ), 299 – 307 ( 2002 ).
  • Koren E , ApteA , JaniA , TorchilinVP . Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity . J. Control. Release160 ( 2 ), 264 – 273 ( 2012 ).
  • Zhu L , KateP , TorchilinVP . Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting . ACS Nano6 ( 4 ), 3491 – 3498 ( 2012 ).
  • Varkouhi AK , ScholteM , StormG , HaismaHJ . Endosomal escape pathways for delivery of biologicals . J. Control. Release151 ( 3 ), 220 – 228 ( 2011 ).
  • Kullberg M , MannK , AnchordoquyTJ . Targeting HER-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO . Mol. Pharm.9 ( 7 ), 2000 – 2008 ( 2012 ).
  • Barrajón-Catalán E , Menéndez-GutiérrezMP , FalcoAet al. Selective death of human breast cancer cells by lytic immunoliposomes: correlation with their HER2 expression level . Cancer Lett.290 ( 2 ), 192 – 203 ( 2010 ).
  • Kim I-Y , KangY-S , LeeDSet al. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice . J. Control. Release140 ( 1 ), 55 – 60 ( 2009 ).
  • Smith B , LyakhovI , LoomisKet al. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes) . J. Control. Release153 ( 2 ), 187 – 194 ( 2011 ).
  • Denison TA , BaeYH . Tumor heterogeneity and its implication for drug delivery . J. Control. Release164 ( 2 ), 187 – 191 ( 2012 ).
  • Laginha K , MumbengegwiD , AllenT . Liposomes targeted via two different antibodies: assay, B-cell binding and cytotoxicity . Biochim. Biophys. Acta1711 ( 1 ), 25 – 32 ( 2005 ).
  • Yu B , MaoY , YuanYet al. Targeted drug delivery and cross-linking induced apoptosis with anti-CD37 based dual-ligand immunoliposomes in B chronic lymphocytic leukemia cells . Biomaterials34 ( 26 ), 6185 – 6193 ( 2013 ).
  • Cheng Z , Al ZakiA , HuiJZ , MuzykantovVR , TsourkasA . Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities . Science338 ( 6109 ), 903 – 910 ( 2012 ).
  • Matsumura Y , GotohM , MuroKet al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer . Ann. Oncol.15 ( 3 ), 517 – 525 ( 2004 ).
  • Mamot C , RitschardR , WickiAet al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a Phase 1 dose-escalation study . Lancet Oncol.13 ( 12 ), 1234 – 1241 ( 2012 ).
  • Reynolds JG , GerettiE , HendriksBSet al. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity . Toxicol. Appl. Pharm.262 ( 1 ), 1 – 10 ( 2012 ).
  • Senzer N , NemunaitisJ , NemunaitisDet al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors . Mol. Ther.21 ( 5 ), 1096 – 1103 ( 2013 ).
  • Kirpotin D , ParkJW , HongKet al. Sterically stabilized anti-HER2Immunoliposomes: design and targeting to human breast cancer cells in vitro . Biochemisty36 ( 1 ), 66 – 75 ( 1997 ).
  • Nielsen UB , KirpotinDB , PickeringEMet al. Therapeutic efficacy ofanti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellularendocytosis . (BBA) Mol. Cell. Res.1591 ( 1–3 ), 109 – 118 ( 2002 ).
  • Hosokawa S , TagawaT , NikiH , HirakawaY , NohgaK , NagaikeK . Efficacy of immunoliposomes on cancer models in acell-surface-antigen-density-dependent manner . Br. J. Cancer89 ( 8 ), 1545 – 1551 ( 2003 ).
  • Mamot C , DrummondDC , GreiserUet al. Epidermal growth factor receptor(EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery toEGFR- and EGFRvIII-overexpressing tumor cells . Cancer Res.63 ( 12 ), 3154 – 3161 ( 2003 ).
  • Mamot C , RitschardR , KungW , ParkJW , HerrmannR , RochlitzCF . EGFR-targeted immunoliposomes derived from the monoclonal antibodyEMD72000 mediate specific and efficient drug delivery to a variety ofcolorectal cancer cells . J. Drug Target.14 ( 4 ), 215 – 223 ( 2006 ).
  • Chiu GN , EdwardsLA , KapanenAIet al. Modulation of cancer cellsurvival pathways using multivalent liposomal therapeutic antibody constructs . Mol. Cancer Ther.6 ( 3 ), 844 – 855 ( 2007 ).
  • Schnyder A , KrähenbühlS , DreweJ , HuwylerJ . Targeting of daunomycin using biotinylated immunoliposomes: Pharmacokinetics, tissue distribution and in vitro pharmacological effects . J. Drug Target.13 ( 5 ), 325 – 335 ( 2005 ).
  • Mccarron PA , MaroufWM , QuinnDJet al. Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells . Bioconjug. Chem.19 ( 8 ), 1561 – 1569 ( 2008 ).
  • Karra N , NassarT , RipinANet al. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model . Small9 ( 24 ), 4221 – 4236 ( 2013 ).
  • Voltan R , SecchieroP , RuoziBet al. Nanoparticles engineered with rituximab and loaded with Nutlin-3 show promising therapeutic activity in B-leukemic xenografts . Clin. Cancer Res.19 ( 14 ), 3871 – 3880 ( 2013 ).
  • Abdelghany SM , SchmidD , DeaconJet al. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetratosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles . Biomacromolecules14 ( 2 ), 302 – 310 ( 2013 ).
  • Wang JL , TangGP , ShenJet al. A gene nanocomplex conjugated with monoclonal antibodies for targeted therapy of hepatocellular carcinoma . Biomaterials33 ( 18 ), 4597 – 4607 ( 2012 ).
  • Sawant RR , JhaveriAM , KoshkaryevA , QureshiF , TorchilinVP . The effect of dual ligand-targeted micelles on the delivery and efficacy of poorly soluble drug for cancer therapy . J. Drug Target.21 ( 7 ), 630 – 638 ( 2013 ).
  • Chan DPY , DeleaveyGF , OwenSC , DamhaMJ , ShoichetMS . Click conjugated polymeric immuno-nanoparticles for targeted siRNA and antisense oligonucleotide delivery . Biomaterials34 ( 33 ), 8408 – 8415 ( 2013 ).
  • Lee JS , GroothuisT , CusanC , MinkD , FeijenJ . Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy . Biomaterials32 ( 34 ), 9144 – 9153 ( 2011 ).
  • Marega R , KarmaniL , FlamantLet al. Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study . J. Mater. Chem.22 ( 39 ), 21305 – 21312 ( 2012 ).
  • Chen F , HongH , ZhangYet al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles . ACS Nano7 ( 10 ), 9027 – 9039 ( 2013 ).
  • Duncan R . Polymer conjugates as anticancer nanomedicines . Nat. Rev. Cancer6 ( 9 ), 688 – 701 ( 2006 ).
  • Seymour LW , FerryDR , KerrDJet al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer . Int. J. Oncol.34 ( 6 ), 1629 – 1636 ( 2009 ).
  • Kovář M , MrkvanT , StrohalmJet al. HPMA copolymer-bound doxorubicin targeted to tumor-specific antigen of BCL1 mouse B cell leukemia . J. Control. Release92 ( 3 ), 315 – 330 ( 2003 ).
  • Ulbrich K , EtrychT , ChytilP , JelínkováM , ŘíhováB . Antibody-targeted polymer–doxorubicin conjugates with pH-controlled activation . J. Drug Target.12 ( 8 ), 477 – 489 ( 2004 ).
  • Ding H , InoueS , LjubimovAVet al. Inhibition of brain tumor growth by intravenous poly(β-l-malic acid) nanobioconjugate with pH-dependent drug release . Proc. Natl Acad. Sci. USA107 ( 42 ), 18143 – 18148 ( 2010 ).
  • Inoue S , DingH , Portilla-AriasJet al. Polymalic acid–based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity . Cancer Res.71 ( 4 ), 1454 – 1464 ( 2011 ).
  • Hussain AF , KrügerHR , KampmeierFet al. Targeted delivery of dendritic polyglycerol–doxorubicin conjugates by scFv-SNAP fusion protein suppresses EGFR+ cancer cell growth . Biomacromolecules14 ( 8 ), 2510 – 2520 ( 2013 ).
  • Pola R , LagaR , UlbrichKet al. Polymer therapeutics with a coiled coil motif targeted against murine BCL1 leukemia . Biomacromolecules14 ( 3 ), 881 – 889 ( 2013 ).
  • Han H , DavisME . Targeted nanoparticles assembled via complexation of boronic-acid-containing targeting moieties to diol-containing polymers . Bioconjug. Chem.24 ( 4 ), 669 – 677 ( 2013 ).
  • Han H , DavisME . Single-antibody, targeted nanoparticle delivery of camptothecin . Mol. Pharm.10 ( 7 ), 2558 – 2567 ( 2013 ).
  • Sawant RR , JhaveriAM , TorchilinVP . Immunomicelles for advancing personalized therapy . Adv. Drug Deliv. Rev.64 ( 13 ), 1436 – 1446 ( 2012 ).
  • Mehta G , HsiaoAY , IngramM , LukerGD , TakayamaS . Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy . J. Control. Release164 ( 2 ), 192 – 204 ( 2012 ).
  • Perche F , PatelNR , TorchilinVP . Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG–PE micelles in ovarian cancer cell spheroid model . J. Control. Release164 ( 1 ), 95 – 102 ( 2012 ).
  • Li W , ZhaoH , QianWet al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles . Biomaterials33 ( 21 ), 5349 – 5362 ( 2012 ).
  • Wu H , ZhuL , TorchilinVP . pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery . Biomaterials34 ( 4 ), 1213 – 1222 ( 2013 ).
  • Abouzeid AH , PatelNR , RachmanIM , SennS , TorchilinVP . Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin . J. Drug Target.21 ( 10 ), 994 – 1000 ( 2013 ).
  • Zhao J , MiY , FengS-S . Targeted co-delivery of docetaxel and siPlk1 by herceptin-conjugated vitamin E TPGS based immunomicelles . Biomaterials34 ( 13 ), 3411 – 3421 ( 2013 ).
  • Guo J , HongH , ChenGet al. Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles . Biomaterials34 ( 33 ), 8323 – 8332 ( 2013 ).
  • Swaminathan SK , RogerE , TotiUet al. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer . J. Control. Release171 ( 3 ), 280 – 287 ( 2013 ).
  • Qian C , WangY , ChenYet al. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles . Biomaterials34 ( 26 ), 6175 – 6184 ( 2013 ).
  • Fay F , McLaughlinKM , SmallDMet al. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery . Biomaterials32 ( 33 ), 8645 – 8653 ( 2011 ).
  • Mattu C , PabariRM , BoffitoMet al. Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells . Eur. J. Pharm. Biopharm.85 ( 3, Part A ), 463 – 472 ( 2013 ).
  • Morral-Ruíz G , Melgar-LesmesP , SolansC , García-CelmaMJ . Multifunctional polyurethane–urea nanoparticles to target and arrest inflamed vascular environment: a potential tool for cancer therapy and diagnosis . J. Control. Release171 ( 2 ), 163 – 171 ( 2013 ).
  • Mandal B , BhattacharjeeH , MittalNet al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform . Nanomed. Nanotech. Biol. Med.9 ( 4 ), 474 – 491 ( 2013 ).
  • Hadinoto K , SundaresanA , CheowWS . Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review . Eur. J. Pharm. Biopharm.85 ( 3, Part A ), 427 – 443 ( 2013 ).
  • Fiandra L , MazzucchelliS , De PalmaCet al. Assessing the in vivo targeting efficiency of multifunctional nanoconstructs bearing antibody-derived ligands . ACS Nano7 ( 7 ), 6092 – 6102 ( 2013 ).
  • Quarta A , CurcioA , KakwereH , PellegrinoT . Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications . Nanoscale4 ( 11 ), 3319 – 3334 ( 2012 ).
  • Yewale C , BaradiaD , VhoraI , MisraA . Proteins: emerging carrier for delivery of cancer therapeutics . Expert Opin. Drug Deliv.10 ( 10 ), 1429 – 1448 ( 2013 ).
  • Fu Q , SunJ , ZhangWet al. Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery . Recent Pat. Anticancer Drug Discov.4 ( 3 ), 262 – 272 ( 2009 ).
  • Elzoghby AO , SamyWM , ElgindyNA . Albumin-based nanoparticles as potential controlled release drug delivery systems . J. Control. Release157 ( 2 ), 168 – 182 ( 2012 ).
  • Chandran P , GuptaN , RetnakumariAPet al. Simultaneous inhibition of aberrant cancer kinome using rationally designed polymer-protein core-shell nanomedicine . Nanomed. Nanotech. Biol. Med.9 ( 8 ), 1317 – 1327 ( 2013 ).
  • Cohen S , MargelS . Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer . J. Nanobiotechnol.10 ( 1 ), 36 ( 2012 ).
  • Taheri A , DinarvandR , AtyabiF , GhahremaniMH , OstadSN . Trastuzumab decorated methotrexate-human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells . Eur. J. Pharm. Sci.47 ( 2 ), 331 – 340 ( 2012 ).
  • Kouchakzadeh H , ShojaosadatiSA , TahmasebiF , ShokriF . Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles . Int. J. Pharm.447 ( 1–2 ), 62 – 69 ( 2013 ).
  • Altintas I , HeukersR , Van Der MeelRet al. Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells . J. Control. Release165 ( 2 ), 110 – 118 ( 2013 ).
  • Gaca S , ReichertS , MulthoffGet al. Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells . J. Control. Release172 ( 1 ), 201 – 206 ( 2013 ).
  • Steinhauser I , SpänkuchB , StrebhardtK , LangerK . Trastuzumab-modified nanoparticles: optimisation of preparation and uptake incancer cells . Biomaterials27 ( 28 ), 4975 – 4983 ( 2006 ).
  • Wagner S , RothweilerF , AnhornMGet al. Enhanced drug targeting byattachment of an anti alphav integrin antibody to doxorubicin loaded humanserum albumin nanoparticles . Biomaterials31 ( 8 ), 2388 – 2398 ( 2010 ).
  • Gao J , FengSS , GuoY . Antibody engineering promotes nanomedicine for cancer treatment . Nanomedicine5 ( 8 ), 1141 – 1145 ( 2010 ).
  • Hauert S , BermanS , NagpalR , BhatiaSN . A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors . Nano Today8 ( 6 ), 566 – 576 ( 2013 ).
  • Albanese A , LamAK , SykesEA , RocheleauJV , ChanWCW . Tumour-on-a-chip provides an optical window into nanoparticle tissue transport . Nat. Commun.4 , 2718 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.