259
Views
0
CrossRef citations to date
0
Altmetric
Review

Development of Nanotoxicology: Implications for Drug Delivery and Medical Devices

&
Pages 2289-2305 | Published online: 26 Jun 2015

References

  • Aitken RJ , ChaudhryMQ , BoxallAB , HullM . Manufacture and use of nanomaterials: current status in the UK and global trends . Occup. Med.56 ( 5 ), 300 – 306 ( 2006 ).
  • García-Cámara B , SaizJM , GonzálezF , MorenoF . Nanoparticles with unconventional scattering properties: size effects . Opt. Commun.283 ( 3 ), 490 – 496 ( 2010 ).
  • Maynard AD . A decade of uncertainty . Nat. Nanotech.9 ( 3 ), 159 – 160 ( 2014 ).
  • Buzea C , PachecoIi , RobbieK . Nanomaterials and nanoparticles: sources and toxicity . Biointerphases2 ( 4 ), MR17 – MR71 ( 2007 ).
  • Mura S , HillaireauH , NicolasJet al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells . Int. J. Nanomed.6 , 2591 – 2605 ( 2011 ).
  • Park Y-H , BaeH , JangYet al. Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity . Mol. Cell. Toxicol.9 ( 1 ), 67 – 74 ( 2013 ).
  • Bhattacharjee S , De HaanLHJ , EversNMet al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells . Part. Fibre Toxicol.7 , 25 ( 2010 ).
  • Gamucci O , BerteroA , GagliardiM , BardiG . Biomedical nanoparticles: overview of their surface immune-compatibility . Coatings4 ( 1 ), 139 – 159 ( 2014 ).
  • Bhattacharjee S , ErshovD , FytianosKet al. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics . Part. Fibre Toxicol.9 , 11 ( 2012 ).
  • Lundqvist M , StiglerJ , EliaGet al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts . Proc. Natl Acad. Sci. USA105 ( 38 ), 14265 – 14270 ( 2008 ).
  • Teeguarden JG , HinderliterPM , OrrG , ThrallBD , PoundsJG . Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments . Toxicol. Sci.95 ( 2 ), 300 – 312 ( 2007 ).
  • Baer DR , EngelhardMH , JohnsonGEet al. Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities . J. Vac. Sci. Technol. A31 ( 5 ), 50820 ( 2013 ).
  • Kim T-H , KimM , ParkH-Set al. Size-dependent cellular toxicity of silver nanoparticles . J. Biomed. Mat. Res. A100A ( 4 ), 1033 – 1043 ( 2012 ).
  • Taylor U , BarchanskiA , GarrelsWet al. Toxicity of gold nanoparticles on somatic and reproductive cells . In : Nano-Biotechnology for Biomedical and Diagnostic Research . Springer , Amsterdam, The Netherlands , 125 – 133 ( 2012 ).
  • Dembereldorj U , GanboldE-O , SeoJ-Het al. Conformational changes of proteins adsorbed onto ZnO nanoparticle surfaces investigated by concentration-dependent infrared spectroscopy . Vib. Spectrosc.59 , 23 – 28 ( 2012 ).
  • Katelhon E , ComptonRG . Nanoparticles in sensing applications: on what timescale do analyte species adsorb on the particle surface?Analyst139 , 2411 – 2415 ( 2014 ).
  • Jones R . It’s not just about nanotoxicology . Nat. Nanotech.4 ( 10 ), 615 – 615 ( 2009 ).
  • Bohnsack J , AssemiS , MillerJ , FurgesonD . The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model . In : Nanotoxicity . Humana Press , NJ, USA , 261 – 316 ( 2012 ).
  • Maynard AD , WarheitDB , PhilbertMA . The new toxicology of sophisticated materials: nanotoxicology and beyond . Toxicol. Sci.120 ( Suppl. 1 ), S109 – S129 ( 2011 ).
  • Goldberg MS , HookSS , WangAZet al. Biotargeted nanomedicines for cancer: six tenets before you begin . Nanomedicine (Lond.)8 ( 2 ), 299 – 308 ( 2013 ).
  • Warheit DB , DonnerEM . Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines . Nanotoxicology4 ( 4 ), 409 – 413 ( 2010 ).
  • Hwang M , LeeEJ , KweonSYet al. Risk assessment principle for engineered nanotechnology in food and drug . Toxicol. Res.28 ( 2 ), 73 – 79 ( 2012 ).
  • Grainger DW . Nanotoxicity assessment: all small talk?Adv. Drug Deliv. Rev.61 ( 6 ), 419 – 421 ( 2009 ).
  • Jones CF , GraingerDW . In vitro assessments of nanomaterial toxicity . Adv. Drug Deliv. Rev.61 ( 6 ), 438 – 456 ( 2009 ).
  • Wörle-Knirsch JM , PulskampK , KrugHF . Oops! They did it again! Carbon nanotubes hoax scientists in viability assays . Nano Lett.6 ( 6 ), 1261 – 1268 ( 2006 ).
  • Ong KJ , MaccormackTJ , ClarkRJet al. Widespread nanoparticle-assay interference: implications for nanotoxicity testing . PLoS ONE9 ( 3 ), e90650 ( 2014 ).
  • Krug HF . Nanosafety research: are we on the right track?Angew. Chem. Int. Ed. Engl.53 ( 46 ), 12304 – 12319 ( 2014 ).
  • Wittmaack K . Excessive delivery of nanostructured matter to submersed cells caused by rapid gravitational settling . ACS Nano5 ( 5 ), 3766 – 3778 ( 2011 ).
  • Yazdi AS , GuardaG , RiteauNet al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1 alpha and IL-1 beta . Proc. Natl Acad. Sci. USA107 ( 45 ), 19449 – 19454 ( 2010 ).
  • Spohn P , HirschC , HaslerFet al. C-60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays . Environ. Pollut.157 ( 4 ), 1134 – 1139 ( 2009 ).
  • Grainger DW , CastnerDG . Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies . Adv. Mater.20 ( 5 ), 867 – 877 ( 2008 ).
  • Bhattacharjee S , ErshovD , IslamMAet al. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles . RSC Adv.4 ( 37 ), 19321 – 19330 ( 2014 ).
  • Treuel L , BrandholtS , MaffrePet al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell Interactions . ACS Nano8 ( 1 ), 503 – 513 ( 2014 ).
  • Cedervall T , LynchI , LindmanSet al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles . Proc. Natl Acad. Sci. USA104 ( 7 ), 2050 – 2055 ( 2007 ).
  • Jiang X , WeiseS , HafnerMet al. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding . J. R. Soc. Interface7 ( Suppl. 1 ), S5 – S13 ( 2010 ).
  • Lundqvist M . Nanoparticles: tracking protein corona over time . Nat. Nanotech.8 ( 10 ), 701 – 702 ( 2013 ).
  • Saptarshi SR , DuschlA , LopataAL . Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle . J. Nanobiotechnol.11 , 26 ( 2013 ).
  • Walczyk D , BombelliFB , MonopoliMP , LynchI , DawsonKA . What the cell ‘sees’ in bionanoscience . J. Am. Chem. Soc.132 ( 16 ), 5761 – 5768 ( 2010 ).
  • Pino PD , PelazB , ZhangQet al. Protein corona formation around nanoparticles: from the past to the future . Mat. Horizons1 ( 3 ), 301 – 313 ( 2014 ).
  • Clift MJD , BhattacharjeeS , BrownDM , StoneV . The effects of serum on the toxicity of manufactured nanoparticles . Toxicol. Lett.198 ( 3 ), 358 – 365 ( 2010 ).
  • Tenzer S , DocterD , KuharevJet al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology . Nat. Nanotech.8 ( 10 ), U772 – U1000 ( 2013 ).
  • Vroman L , AdamsAL , FischerGC , MunozPC . Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces . Blood55 ( 1 ), 156 – 159 ( 1980 ).
  • Horbett TA . Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. II. Compositional analysis with the prelabeled protein technique . J. Biomed. Mater. Res.15 ( 5 ), 673 – 695 ( 1981 ).
  • Andrade JD , HladyV . Plasma protein adsorption: the big twelve . Ann. NY Acad. Sci.516 , 158 – 172 ( 1987 ).
  • Brash JL , Ten HoveP . Protein adsorption studies on ‘standard’ polymeric materials . J. Biomater. Sci. Polym. Ed.4 ( 6 ), 591 – 599 ( 1993 ).
  • Schleh C , Semmler-BehnkeM , LipkaJet al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration . Nanotoxicology6 ( 1 ), 36 – 46 ( 2012 ).
  • Bhattacharjee S , MarcelisATM , ZuilhofHet al. Role of surface charge in bioavailability and biodistribution of tri-block copolymer nanoparticles in rats after oral exposure . Toxicol. Res.2 ( 3 ), 187 – 192 ( 2013 ).
  • Thiagarajan G , GreishK , GhandehariH . Charge affects the oral toxicity of poly(amidoamine) dendrimers . Eur. J. Pharm. Biopharm.84 ( 2 ), 330 – 334 ( 2013 ).
  • Ziemba B , JanaszewskaA , CiepluchKet al. In vivo toxicity of poly(propyleneimine) dendrimers . J. Biomed. Mat. Res. A99A ( 2 ), 261 – 268 ( 2011 ).
  • Ruizendaal L , BhattacharjeeS , PournazariKet al. Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers . Nanotoxicology3 ( 4 ), 339 – 347 ( 2009 ).
  • Lai SK , WangYY , HanesJ . Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues . Adv. Drug Deliv. Rev.61 ( 2 ), 158 – 171 ( 2009 ).
  • Wang F , YuL , MonopoliMPet al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes . Nanomedicine9 ( 8 ), 1159 – 1168 ( 2013 ).
  • Zeng S , HuangY-MM , ChangC-EA , ZhongW . Protein binding for detection of small changes on a nanoparticle surface . Analyst139 ( 6 ), 1364 – 1371 ( 2014 ).
  • Greish K , ThiagarajanG , HerdHet al. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles . Nanotoxicology6 ( 7 ), 713 – 723 ( 2012 ).
  • Jones CF , CampbellRA , FranksZet al. Cationic PAMAM dendrimers disrupt key platelet functions . Mol. Pharm.9 ( 6 ), 1599 – 1611 ( 2012 ).
  • Sayes CM , BanerjeeN , RomoserAA . The role of oxidative stress in nanotoxicology . In : General, Applied and Systems Toxicology . John Wiley & Sons, Ltd. (Wiley Online Library) , NJ, USA ( 2009 ).
  • Khatri M , BelloD , GainesPet al. Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers . Nanotoxicology7 ( 5 ), 1014 – 1027 ( 2013 ).
  • Sharma G , KodaliV , GaffreyMet al. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro . Nanotoxicology8 ( 6 ), 663 – 675 ( 2014 ).
  • Manke A , WangL , RojanasakulY . Mechanisms of nanoparticle-induced oxidative stress and toxicity . BioMed. Res. Int.15 , Article ID 942916 ( 2013 ).
  • Frohlich E . Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles . Curr. Drug Metab.14 ( 9 ), 976 – 988 ( 2013 ).
  • Bhattacharjee S , RietjensIMCM , SinghMPet al. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges . Nanoscale5 ( 11 ), 4870 – 4883 ( 2013 ).
  • Roesslein M , HirschC , KaiserJP , KrugHF , WickP . Comparability of in vitro tests for bioactive nanoparticles: a common assay to detect reactive oxygen species as an example . Int. J. Mol. Sci.14 ( 12 ), 24320 – 24337 ( 2013 ).
  • Nicholls DG , ChalmersS . The integration of mitochondrial calcium transport and storage . J. Bioenerg. Biomembr.36 ( 4 ), 277 – 281 ( 2004 ).
  • Xia T , KovochichM , LiongM , ZinkJI , NelAE . Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways . ACS Nano2 ( 1 ), 85 – 96 ( 2007 ).
  • De Stefano D , CarnuccioR , MaiuriMC . Nanomaterials toxicity and cell death modalities . J. Drug Deliv.167896 ( 2012 ).
  • Sun G-B , SunH , MengX-Bet al. Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats . Toxicol. Appl. Pharmacol.279 ( 1 ), 8 – 22 ( 2014 ).
  • Okoturo-Evans O , DybowskaA , Valsami-JonesEet al. Elucidation of toxicity pathways in lung epithelial cells induced by silicon dioxide nanoparticles . PLoS ONE8 ( 9 ), e72363 ( 2013 ).
  • Chairuangkitti P , LawanprasertS , RoytrakulSet al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways . Toxicol. In Vitro27 ( 1 ), 330 – 338 ( 2013 ).
  • Park K . Facing the truth about nanotechnology in drug delivery . ACS Nano7 ( 9 ), 7442 – 7447 ( 2013 ).
  • Bae YH , ParkK . Targeted drug delivery to tumors: myths, reality and possibility . J. Control. Release153 ( 3 ), 198 – 205 ( 2011 ).
  • Stirland DL , NicholsJW , MiuraS , BaeYH . Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice . J. Control. Release172 ( 3 ), 1045 – 1064 ( 2013 ).
  • Kwon IK , LeeSC , HanB , ParkK . Analysis on the current status of targeted drug delivery to tumors . J. Control. Release164 ( 2 ), 108 – 114 ( 2012 ).
  • Bertrand N , LerouxJC . The journey of a drug-carrier in the body: an anatomo-physiological perspective . J. Control. Release161 ( 2 ), 152 – 163 ( 2012 ).
  • Florence AT . ‘Targeting’ nanoparticles: the constraints of physical laws and physical barriers . J. Control. Release164 ( 2 ), 115 – 124 ( 2012 ).
  • Lammers T , KiesslingF , HenninkWE , StormG . Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress . J. Control. Release161 ( 2 ), 175 – 187 ( 2012 ).
  • Wang Y , GraingerD . Barriers to advancing nanotechnology to better improve and translate nanomedicines . Front. Chem. Sci. Eng.8 ( 3 ), 265 – 275 ( 2014 ).
  • Jokerst JV , LobovkinaT , ZareRN , GambhirSS . Nanoparticle PEGylation for imaging and therapy . Nanomedicine (Lond.)6 ( 4 ), 715 – 728 ( 2011 ).
  • Salmaso S , CalicetiP . Stealth properties to improve therapeutic efficacy of drug nanocarriers . J. Drug Deliv.2013 , 19 ( 2013 ).
  • Lai SK , WangY-Y , HanesJ . Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues . Adv. Drug Deliv. Rev.61 ( 2 ), 158 – 171 ( 2009 ).
  • Bhattacharjee S , Van OpstalE , AlinkGet al. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells . J. Nanopart. Res.15 ( 6 ), 1 – 14 ( 2013 ).
  • Winkler DA , MombelliE , PietroiustiAet al. Applying quantitative structure–activity relationship approaches to nanotoxicology: current status and future potential . Toxicology313 ( 1 ), 15 – 23 ( 2013 ).
  • Shao C-Y , ChenS-Z , SuB-Het al. Dependence of QSAR models on the selection of trial descriptor sets: a demonstration using nanotoxicity endpoints of decorated nanotubes . J. Chem. Info. Modeling53 ( 1 ), 142 – 158 ( 2012 ).
  • Burello E , WorthA . Computational nanotoxicology: predicting toxicity of nanoparticles . Nat. Nanotech.6 ( 3 ), 138 – 139 ( 2011 ).
  • Marano F , HussainS , Rodrigues-LimaF , Baeza-SquibanA , BolandS . Nanoparticles: molecular targets and cell signalling . Arch. Toxicol.85 ( 7 ), 733 – 741 ( 2011 ).
  • Decuzzi P , FerrariM . The receptor-mediated endocytosis of nonspherical particles . Biophys. J.94 ( 10 ), 3790 – 3797 ( 2008 ).
  • Helikar T , KochiN , KowalBet al. A comprehensive, multi-Scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells . PLoS ONE8 ( 4 ), e61757 ( 2013 ).
  • Sommer B , DingersenT , GamrothCet al. CELLmicrocosmos 2.2 membrane editor: a modular interactive shape-based software approach to solve heterogeneous membrane packing problems . J. Chem. Info. Modeling51 ( 5 ), 1165 – 1182 ( 2011 ).
  • Gnach A , LipinskiT , BednarkiewiczA , RybkaJ , CapobiancoJA . Upconverting nanoparticles: assessing the toxicity . Chem. Soc. Rev.44 , 1561 – 1584 ( 2015 ).
  • Huh D , TorisawaY-S , HamiltonGA , KimHJ , IngberDE . Microengineered physiological biomimicry: organs-on-chips . Lab Chip12 ( 12 ), 2156 – 2164 ( 2012 ).
  • Kubler A , MattiaD , RuppR , TangermannM . Facing the challenge: bringing brain–computer interfaces to end-users . Artif. Intel. Med.59 ( 2 ), 55 – 60 ( 2013 ).
  • Holz EM , HohneJ , Staiger-SalzerP , TangermannM , KublerA . Brain–computer interface controlled gaming: evaluation of usability by severely motor restricted end-users . Artif. Intel. Med.59 ( 2 ), 111 – 120 ( 2013 ).
  • Suenderhauf C , HammannF , HuwylerJ . Computational prediction of blood–brain barrier permeability using decision tree induction . Molecules17 ( 9 ), 10429 – 10445 ( 2012 ).
  • Wood MA . Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications . J. R. Soc. Interface4 ( 12 ), 1 – 17 ( 2007 ).
  • Friend J , YeoL . Fabrication of microfluidic devices using polydimethylsiloxane . Biomicrofluidics4 ( 2 ), 026502 ( 2010 ).
  • Dittrich PS , ManzA . Lab-on-a-chip: microfluidics in drug discovery . Nat. Rev. Drug Discov.5 ( 3 ), 210 – 218 ( 2006 ).
  • Figeys D . Adapting arrays and lab-on-a-chip technology for proteomics . Proteomics2 ( 4 ), 373 – 382 ( 2002 ).
  • Tsai NC , SueCY . Review of MEMS-based drug delivery and dosing systems . Sens. Actuat. A Phys.134 ( 2 ), 555 – 564 ( 2007 ).
  • James T , MannoorMS , IvanovDV . BioMEMS: advancing the frontiers of medicine . Sensors8 ( 9 ), 6077 – 6107 ( 2008 ).
  • Lee SJ , LeeSY . Micro total analysis system (μ-TAS) in biotechnology . Appl. Microbiol. Biotechnol.64 ( 3 ), 289 – 299 ( 2004 ).
  • Bhat S , KumarA . Biomaterials and bioengineering tomorrow’s healthcare . Biomatter3 ( 3 ), e24717 ( 2013 ).
  • Whitesides GM . The origins and the future of microfluidics . Nature442 ( 7101 ), 368 – 373 ( 2006 ).
  • Yu Z , LuS , HuangY . Microfluidic whole genome amplification device for single cell sequencing . Anal. Chem.86 ( 19 ), 9386 – 9390 ( 2014 ).
  • Sackmann EK , FultonAL , BeebeDJ . The present and future role of microfluidics in biomedical research . Nature507 ( 7491 ), 181 – 189 ( 2014 ).
  • Maragoudakis M , MaglogiannisI . A medical ontology for intelligent web-based skin lesions image retrieval . Health Inform. J.17 ( 2 ), 140 – 157 ( 2011 ).
  • Wu JD , WuX , LinF . Recent developments in microfluidics-based chemotaxis studies . Lab Chip13 ( 13 ), 2484 – 2499 ( 2013 ).
  • Ertl P , StickerD , CharwatV , KasperC , LepperdingerG . Lab-on-a-chip technologies for stem cell analysis . Trends Biotechnol.32 ( 5 ), 245 – 253 ( 2014 ).
  • Roy J , KennedyTE , CostantinoS . Engineered cell culture substrates for axon guidance studies: moving beyond proof of concept . Lab Chip13 ( 4 ), 498 – 508 ( 2013 ).
  • Wang KIK , SalcicZ , YehJet al. Toward embedded laboratory automation for smart lab-on-a-chip embryo arrays . Biosens. Bioelectron.48 , 188 – 196 ( 2013 ).
  • Inoue H , NagataN , KurokawaH , YamanakaS . iPS cells: a game changer for future medicine . EMBO J.33 ( 5 ), 409 – 417 ( 2014 ).
  • Huh D , MatthewsBD , MammotoAet al. Reconstituting organ-level lung functions on a chip . Science328 ( 5986 ), 1662 – 1668 ( 2010 ).
  • Bhushan A , SenutovitchN , BaleSSet al. Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans . Stem Cell Res. Ther.4 ( Suppl. 1 ), S16 ( 2013 ).
  • Kim HJ , HuhD , HamiltonG , IngberDE . Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow . Lab Chip12 ( 12 ), 2165 – 2174 ( 2012 ).
  • Marx U , WallesH , HoffmannSet al. ‘Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? ATLA 40 ( 5 ), 235 – 257 ( 2012 ).
  • Huh D , FujiokaH , TungYCet al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems . Proc. Natl Acad. Sci. USA104 ( 48 ), 18886 – 18891 ( 2007 ).
  • Bhatia SN , IngberDE . Microfluidic organs-on-chips . Nat. Biotechnol.32 ( 8 ), 760 – 772 ( 2014 ).
  • Grainger DW . Cell-based drug testing; this world is not flat . Adv. Drug Deliv. Rev.69 – 70 , vii – xi ( 2014 ).
  • Astashkina A , GraingerDW . Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments . Adv. Drug Deliv. Rev.69 – 70 , 1 – 18 ( 2014 ).
  • Astashkina AI , JonesCF , ThiagarajanGet al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model . Biomaterials35 ( 24 ), 6323 – 6331 ( 2014 ).
  • Van Midwoud PM , GroothuisGMM , MeremaMT , VerpoorteE . Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies . Biotechnol. Bioeng.105 ( 1 ), 184 – 194 ( 2010 ).
  • Van Midwoud PM , MeremaMT , VerpoorteE , GroothuisGMM . A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices . Lab Chip10 ( 20 ), 2778 – 2786 ( 2010 ).
  • Sachan N , SinghVP , VermaAK . In vitro meat: the start of new era in meat production . Int. J. Livest. Res.2 ( 1 ), 38 – 51 ( 2012 ).
  • Sanal MG . Future of liver transplantation: non-human primates for patient-specific organs from induced pluripotent stem cells . World J. Gastroenterol.17 ( 32 ), 3684 – 3690 ( 2011 ).
  • Kumareswaran K , EvansML , HovorkaR . Artificial pancreas: an emerging approach to treat Type 1 diabetes . Expert Rev. Med. Devices6 ( 4 ), 401 – 410 ( 2009 ).
  • Barnard J , TsuiSSL . The total artificial heart in a cardiac replacement therapy programme . Br. J. Hosp. Med.73 ( 12 ), 672 – 676 ( 2012 ).
  • Dhandayuthapani B , YoshidaY , MaekawaT , KumarDS . Polymeric scaffolds in tissue engineering application: a review . Int. J. Polym. Sci. ( 2011 ).
  • Ingavle GC , LeachJK . Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering . Tissue Eng. B20 ( 4 ), 277 – 293 ( 2014 ).
  • Lei YG , SchafferDV . A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation . Proc. Natl Acad. Sci. USA110 ( 52 ), E5039 – E5048 ( 2013 ).
  • Ma PX , ChoiJW . Biodegradable polymer scaffolds with well-defined interconnected spherical pore network . Tissue Eng.7 ( 1 ), 23 – 33 ( 2001 ).
  • Rosso F , MarinoG , GiordanoAet al. Smart materials as scaffolds for tissue engineering . J. Cell Physiol.203 ( 3 ), 465 – 470 ( 2005 ).
  • Venkatesan J , RyuB , SudhaPN , KimS-K . Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering . Int. J. Biol. Macromol.50 ( 2 ), 393 – 402 ( 2012 ).
  • Wettergreen MA , BucklenBS , LiebschnerMaK , SunW . CAD assembly process for bone replacement scaffolds in computer-aided tissue engineering . Virtual Prototyping and Bio Manufacturing in Medical Applications . Springer , NY, USA , 87 – 111 ( 2008 ).
  • Harrison BS , AtalaA . Carbon nanotube applications for tissue engineering . Biomaterials28 ( 2 ), 344 – 353 ( 2007 ).
  • Ferris CJ , In Het PanhuisM . Conducting bio-materials based on gellan gum hydrogels . Soft Matter5 ( 18 ), 3430 – 3437 ( 2009 ).
  • Banerjee M , BhondeRR . Application of hanging drop technique for stem cell differentiation and cytotoxicity studies . Cytotechnology51 ( 1 ), 1 – 5 ( 2006 ).
  • Fey SJ , WrzesinskiK . Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line . Toxicol. Sci.127 ( 2 ), 403 – 411 ( 2012 ).
  • Durand RE . Multicell spheroids as a model for cell kinetic studies . Cell Prolif.23 ( 3 ), 141 – 159 ( 1990 ).
  • Amann A , ZwierzinaM , GamerithGet al. Development of an innovative 3D cell culture system to study tumour: stroma interactions in non-small cell lung cancer cells . PLoS ONE9 ( 3 ), e92511 ( 2014 ).
  • Stone L . Sexual dysfunction: microtissue injection enhances erectile function . Nat. Rev. Urol.11 ( 9 ), 485 – 485 ( 2014 ).
  • Lee J , LillyGD , DotyRC , PodsiadloP , KotovNA . In vitro toxicity testing of nanoparticles in 3D cell culture . Small5 ( 10 ), 1213 – 1221 ( 2009 ).
  • Mueller D , KrämerL , HoffmannE , KleinS , NoorF . 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies . Toxicol. In Vitro28 ( 1 ), 104 – 112 ( 2014 ).
  • Hashimoto M , ToshimaH , YonezawaTet al. Responses of RAW264.7 macrophages to water-dispersible gold and silver nanoparticles stabilized by metal-carbon sigma-bonds . J. Biomed. Mat. Res. A102 ( 6 ), 1838 – 1849 ( 2014 ).
  • Gao Y , LiM , ChenBet al. Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids . AAPS J.15 ( 3 ), 816 – 831 ( 2013 ).
  • Tasoglu S , DemirciU . Bioprinting for stem cell research . Trends Biotechnol.31 ( 1 ), 10 – 19 ( 2013 ).
  • Bose S , VahabzadehS , BandyopadhyayA . Bone tissue engineering using 3D printing . Mat. Today16 ( 12 ), 496 – 504 ( 2013 ).
  • Sachlos E , CzernuszkaJT . Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds . Eur. Cells Mat.5 , 29 – 39 ( 2003 ).
  • Liu WY , LiY , LiuJYet al. Application and performance of 3D printing in nanobiomaterials . J. Nanomater.2013 , 681050 ( 2013 ).
  • Frame MC , JonesB . Low cost orthopaedic implant trials created using 3D printing technology . Bone Joint J.95-B , 44 ( 2013 ).
  • Orlando G , WoodKJ , StrattaRJet al. Regenerative medicine and organ transplantation: past, present, and future . Transplantation91 ( 12 ), 1310 – 1317 ( 2011 ).
  • Kolesky DB , TrubyRL , GladmanASet al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs . Adv. Mater.26 ( 19 ), 3124 – 3130 ( 2014 ).
  • Bilgin CC , KimS , LeungE , ChangH , ParvinB . Integrated profiling of three dimensional cell culture models and 3D microscopy . Bioinformatics29 ( 23 ), 3087 – 3093 ( 2013 ).
  • Zock JM . Applications of high content screening in life science research . Comb. Chem. High Throughput Screen.12 ( 9 ), 870 – 876 ( 2009 ).
  • Nel A , XiaT , MengHet al. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening . Acc. Chem. Res.46 ( 3 ), 607 – 621 ( 2013 ).
  • Damoiseaux R , GeorgeS , LiMet al. No time to lose: high throughput screening to assess nanomaterial safety . Nanoscale3 , 1345 – 1360 ( 2011 ).
  • Walsh EG , MaherS , DevocelleMet al. High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs . Peptides32 ( 8 ), 1764 – 1773 ( 2011 ).
  • Jan E , ByrneSJ , CuddihyMet al. High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles . ACS Nano2 ( 5 ), 928 – 938 ( 2008 ).
  • Harris G , PalosaariT , MagdolenovaZet al. Iron oxide nanoparticle toxicity testing using high throughput analysis and high content imaging . Nanotoxicology9 , 87 – 94 ( 2015 ).
  • Eide I , NeverdalG , ThorvaldsenB , GrungB , KvalheimOM . Toxicological evaluation of complex mixtures by pattern recognition: correlating chemical fingerprints to mutagenicity . Environ. Health Persp.110 , 985 – 988 ( 2002 ).
  • Wheelock AM , WheelockCE . Trials and tribulations of ‘omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine . Mol. Biosys.9 ( 11 ), 2589 – 2596 ( 2013 ).
  • Riding MJ , MartinFL , TrevisanJet al. Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis . Environ. Pollut.163 , 226 – 234 ( 2012 ).
  • Riding MJ , TrevisanJ , HirschmuglCJet al. Mechanistic insights into nanotoxicity determined by synchrotron radiation-based Fourier-transform infrared imaging and multivariate analysis . Environ. Int.50 , 56 – 65 ( 2012 ).
  • Lal R , ProkschR . Multimodal atomic force microscopy: biological imaging using atomic force microscopy combined with light fluorescence and confocal microscopies and electrophysiologic recording . Int. J. Imag. Syst. Tech.8 ( 3 ), 293 – 300 ( 1997 ).
  • Hapala P , KichinG , WagnerCet al. Mechanism of high-resolution STM/AFM imaging with functionalized tips . Phys. Rev. B90 ( 8 ), 085421 ( 2014 ).
  • Shlyakhtenko LS , LushnikovAY , LiMet al. Atomic force microscopy studies provide direct evidence for dimerization of the HIV restriction factor APOBEC3G . J. Biol. Chem.286 ( 5 ), 3387 – 3395 ( 2011 ).
  • Moretti M , Proietti ZaccariaR , DescroviEet al. Reflection-mode TERS on insulin amyloid fibrils with top-visual AFM probes . Plasmonics8 ( 1 ), 25 – 33 ( 2013 ).
  • Moskalenko AV , YarovaPL , GordeevSN , SmirnovSV . Single protein molecule mapping with magnetic atomic force microscopy . Biophys. J.98 ( 3 ), 478 – 487 ( 2010 ).
  • Upadhye KV , CandielloJE , DavidsonLA , LinH . Whole-cell electrical activity under direct mechanical stimulus by AFM cantilever using planar patch clamp chip approach . Cell Mol. Bioeng.4 ( 2 ), 270 – 280 ( 2011 ).
  • Pesen D , HohJH . Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells . FEBS Lett.579 ( 2 ), 473 – 476 ( 2005 ).
  • Junghanns J-UaH , MüllerRH . Nanocrystal technology, drug delivery and clinical applications . Int. J. Nanomedicine3 ( 3 ), 295 – 310 ( 2008 ).
  • Morakul B , SuksiriworapongJ , LeanpolchareanchaiJ , JunyaprasertVB . Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability . Int. J. Pharm.457 ( 1 ), 187 – 196 ( 2013 ).
  • Kayser O , OlbrichC , YardleyV , KiderlenAF , CroftSL . Formulation of amphotericin B as nanosuspension for oral administration . Int. J. Pharm.254 ( 1 ), 73 – 75 ( 2003 ).
  • Liversidge GG , CundyKC . Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs . Int. J. Pharm.125 ( 1 ), 91 – 97 ( 1995 ).
  • Liversidge GG , ConzentinoP . Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats . Int. J. Pharm.125 ( 2 ), 309 – 313 ( 1995 ).
  • Liu JL , DixitAB , RobertsonKL , QiaoE , BlackLW . Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression . Proc. Natl Acad. Sci. USA111 ( 37 ), 13319 – 13324 ( 2014 ).
  • Wu Z , ChenK , YildizIet al. Development of viral nanoparticles for efficient intracellular delivery . Nanoscale4 ( 11 ), 3567 – 3576 ( 2012 ).
  • Yildiz I , ShuklaS , SteinmetzNF . Applications of viral nanoparticles in medicine . Curr. Opin. Biotechnol.22 ( 6 ), 901 – 908 ( 2011 ).
  • Bruckman MA , HernS , JiangKet al. Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents . J. Mater. Chem. B1 ( 10 ), 1482 – 1490 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.