264
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Attempted Validation of 44 Reported SNPs Associated with Tacrolimus Troughs in a Cohort of Kidney Allograft Recipients

, , , , , , , , & show all
Pages 175-184 | Received 09 Nov 2017, Accepted 15 Dec 2017, Published online: 10 Jan 2018

References

  • Arreola-Guerra JM , SerranoM , Morales-BuenrostroLE , VilatobáM , AlberúJ . Tacrolimus trough levels as a risk factor for acute rejection in renal transplant patients . Ann. Transplant21 , 105 – 114 ( 2016 ).
  • Egeland EJ , RobertsenI , HermannMet al. High tacrolimus clearance is a risk factor for acute rejection in the early phase after renal transplantation . Transplantation101 ( 8 ), e273 – e279 ( 2017 ).
  • Neylan JF . Effect of race and immunosuppression in renal transplantation: three-year survival results from a US multicenter, randomized trial. FK506 Kidney Transplant Study Group . Transplant Proc.30 ( 4 ), 1355 – 1358 ( 1998 ).
  • Jacobson PA , OettingWS , BrearleyAMet al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium . Transplantation91 ( 3 ), 300 – 308 ( 2011 ).
  • Israni AK , RiadSM , LeducRet al. Tacrolimus trough levels after month 3 as a predictor of acute rejection following kidney transplantation: a lesson learned from DeKAF genomics . Transpl. Int.26 ( 10 ), 982 – 989 ( 2013 ).
  • Chen D , GuoF , ShiJet al. Association of hemoglobin levels, CYP3A5, and NR1I3 gene polymorphisms with tacrolimus pharmacokinetics in liver transplant patients . Drug Metab. Pharmacokinet.29 ( 3 ), 249 – 253 ( 2014 ).
  • Li CJ , LiL , LinLet al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients . PLoS ONE9 ( 1 ), e86206 ( 2014 ).
  • Zhang X , WangZ , FanJ , LiuG , PengZ . Impact of interleukin-10 gene polymorphisms on tacrolimus dosing requirements in Chinese liver transplant patients during the early posttransplantation period . Eur. J. Clin. Pharmacology67 ( 8 ), 803 – 813 ( 2011 ).
  • Li D , ZhuJY , WangX , LouYQ , ZhangGL . Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus . Clin. Chim. Acta.383 ( 1–2 ), 133 – 139 ( 2007 ).
  • Liu MZ , HeHY , ZhangYLet al. IL-3 and CTLA4 gene polymorphisms may influence the tacrolimus dose requirement in Chinese kidney transplant recipients . Acta Pharmacol. Sin. 23 , 38 ( 3 ), 415 – 423 ( 2017 ).
  • Choi Y , JiangF , AnH , ParkHJ , ChoiJH , LeeH . A pharmacogenomic study on the pharmacokinetics of tacrolimus in healthy subjects using the DMET™ Plus platform . Pharmacogenomics J.17 ( 2 ), 174 – 179 ( 2016 ).
  • Li JI , LiuS , FuQet al. Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients . Pharmacogenomics16 ( 12 ), 1355 – 1365 ( 2015 ).
  • Press RR , PloegerBA , den HartighJet al. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients . Ther. Drug Monit.31 ( 2 ), 187 – 197 ( 2009 ).
  • Barraclough KA , IsbelNM , LeeKJet al. NR1I2 polymorphisms are related to tacrolimus dose-adjusted exposure and BK viremia in adult kidney transplantation . Transplantation94 ( 10 ), 1025 – 1032 ( 2012 ).
  • Chen D , FanJ , GuoF , QinS , WangZ , PengZ . Novel single nucleotide polymorphisms in interleukin 6 affect tacrolimus metabolism in liver transplant patients . PLoS ONE8 ( 8 ), e73405 ( 2013 ).
  • Elens L , HesselinkDA , BouamarRet al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients . Ther. Drug Monit.36 ( 1 ), 71 – 79 ( 2014 ).
  • Hesselink DA , BouamarR , ElensL , van SchaikRH , van GelderT . The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation . Clin. Pharmacokinet.53 ( 2 ), 123 – 139 ( 2014 ).
  • Lesche D , SigurdardottirV , SetoudRet al. CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients . Ther. Drug Monit.36 ( 6 ), 710 – 715 ( 2014 ).
  • Lunde I , BremerS , MidtvedtKet al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients . Eur. J. Clin. Pharmacol.70 ( 6 ), 685 – 693 ( 2014 ).
  • Tang JT , AndrewsLM , van GelderTet al. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations . Expert Opin. Drug Metab. Toxicol.12 ( 5 ), 555 – 565 ( 2016 ).
  • Kuypers DR , de LoorH , NaesensM , CoopmansT , de JongeH . Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients . Pharmacogenet. Genomics.24 ( 12 ), 597 – 606 ( 2014 ).
  • Jannot AS , VuilleminX , EtienneIet al. A lack of significant effect of POR*28 allelic variant on tacrolimus exposure in kidney transplant recipients . Ther. Drug Monit.38 ( 2 ), 223 – 229 ( 2016 ).
  • Yan L , LiY , TangJT , AnYF , WangLL , ShiYY . Donor ABCB1 3435 C>T genetic polymorphisms influence early renal function in kidney transplant recipients treated with tacrolimus . Pharmacogenomics17 ( 3 ), 249 – 257 ( 2016 ).
  • Ruiz J , HerreroMJ , BosóVet al. Impact of single nucleotide polymorphisms (SNPs) on immunosuppressive therapy in lung transplantation . Int. J. Mol. Sci.16 ( 9 ), 20168 – 20182 ( 2015 ).
  • Naito T , MinoY , AokiYet al. ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis . Clin. Chim. Acta.445 , 79 – 84 ( 2015 ).
  • Knops N , van den HeuvelLP , MasereeuwRet al. The functional implications of common genetic variation in CYP3A5 and ABCB1 in human proximal tubule cells . Mol. Pharm.12 ( 3 ), 758 – 768 ( 2015 ).
  • Kravljaca M , PerovicV , PravicaVet al. The importance of MDR1 gene polymorphisms for tacrolimus dosage . Eur. J. Pharm. Sci.83 , 109 – 113 ( 2016 ).
  • Cusinato DA , LacchiniR , RomaoEA , Moysés-NetoM , CoelhoEB . Relationship of CYP3A5 genotype and ABCB1 diplotype to tacrolimus disposition in Brazilian kidney transplant patients . Br. J. Clin. Pharmacol.78 ( 2 ), 364 – 372 ( 2014 ).
  • Genvigir FD , SalgadoPC , FelipeCRet al. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients . Pharmacogenet. Genomics26 ( 10 ), 462 – 472 ( 2016 ).
  • Elens L , CapronA , KerckhoveVVet al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation . Pharmacogenet. Genomics17 ( 10 ), 873 – 883 ( 2007 ).
  • Dessilly G , ElensL , PaninNet al. ABCB1 1199G>A genetic polymorphism (rs2229109) influences the intracellular accumulation of tacrolimus in HEK293 and K562 recombinant cell lines . PLoS ONE9 ( 3 ), e91555 ( 2014 ).
  • Oetting WS , SchladtDP , GuanWet al. Genome wide association study of tacrolimus concentrations in African–American kidney transplant recipients identifies multiple CYP3A5 ALLELES . Am. J. Transplant.16 ( 2 ), 574 – 582 ( 2016 ).
  • Santoro A , FelipeCR , Tedesco-SilvaHet al. Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients . Pharmacogenomics12 ( 9 ), 1293 – 1303 ( 2011 ).
  • Onizuka M , KuniiN , ToyosakiMet al. Cytochrome P450 genetic polymorphisms influence the serum concentration of calcineurin inhibitors in allogeneic hematopoietic SCT recipients . Bone Marrow Transplant46 , 1113 – 1117 ( 2011 ).
  • Mac Guad R , ZaharanNL , ChikZ , MohamedZ , PengNK , AdnanWA . Effects of CYP3A5 genetic polymorphism on the pharmacokinetics of tacrolimus in renal transplant recipients . Transplant Proc.48 ( 1 ), 81 – 87 ( 2016 ).
  • Nair SS , SarasammaS , GraciousN , GeorgeJ , AnishTS , RadhakrishnanR . Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level . Exp. Clin. Transplant ( Suppl. 1 ), 197 – 200 ( 2015 ).
  • Khaled SK , PalmerJM , HerzogJet al. Influence of absorption, distribution, metabolism, and excretion genomic variants on tacrolimus/sirolimus blood levels and graft-versus-host disease after allogeneic hematopoietic cell transplantation . Biol. Blood Marrow Transplant.22 ( 2 ), 268 – 276 ( 2016 ).
  • Fan J , ZhangX , RenLet al. Donor IL-18 rs5744247 polymorphism as a new biomarker of tacrolimus elimination in Chinese liver transplant patients during the early post-transplantation period: results from two cohort studies . Pharmacogenomics16 ( 3 ), 239 – 250 ( 2015 ).
  • de Jonge H , ElensL , de LoorH , van SchaikRH , KuypersDR . The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients . Pharmacogenomics J.15 ( 2 ), 144 – 152 ( 2015 ).
  • Iwamoto T , MonmaF , FujiedaAet al. Effect of genetic polymorphism of CYP3A5 and CYP2C19 and concomitant use of voriconazole on blood tacrolimus concentration in patients receiving hematopoietic stem cell transplantation . Ther. Drug Monit.37 ( 5 ), 581 – 588 ( 2015 ).
  • Xing J , ZhangX , FanJ , ShenB , MenT , WangJ . Association between interleukin-18 promoter variants and tacrolimus pharmacokinetics in Chinese renal transplant patients . Eur. J. Clin. Pharmacol.71 ( 2 ), 191 – 198 ( 2015 ).
  • Ogasawara K , ChitnisSD , GohhRY , ChristiansU , AkhlaghiF . Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients . Clin. Pharmacokinet.52 ( 9 ), 751 – 762 ( 2013 ).
  • Li DY , TengRC , ZhuHJ , FangY . CYP3A4/5 polymorphisms affect the blood level of cyclosporine and tacrolimus in Chinese renal transplant recipients . Int. J. Clin. Pharmacol. Ther.51 ( 6 ), 466 – 474 ( 2013 ).
  • Shi XJ , GengF , JiaoZ , CuiXY , QiuXY , ZhongMK . Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis . J. Clin. Pharm. Ther.36 ( 5 ), 614 – 624 ( 2011 ).
  • Kurzawski M , DąbrowskaJ , DziewanowskiK , DomańskiL , PerużyńskaM , DroździkM . CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations in kidney transplant recipients . Pharmacogenomics15 ( 2 ), 179 – 188 ( 2014 ).
  • Bruckmueller H , WerkAN , RendersLet al. Which genetic determinants should be considered for tacrolimus dose optimization in kidney transplantation? A combined analysis of genes affecting the CYP3A locus . Ther. Drug Monit.37 ( 3 ), 288 – 295 ( 2015 ).
  • Pallet N , JannotAS , El BahriMet al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations . Am. J. Transplant15 ( 3 ), 800 – 805 ( 2015 ).
  • Aouam K , KolsiA , KerkeniEet al. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase . Pharmacogenomics16 ( 18 ), 2045 – 2054 ( 2015 ).
  • Shi WL , TangHL , ZhaiSD . Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of tacrolimus in adult renal transplant recipients: a meta-analysis . PLoS ONE10 ( 6 ), e0127995 ( 2015 ).
  • Yousef AM , QosaH , BulatovaNet al. Effects of genetic polymorphism in CYP3A4 and CYP3A5 genes on tacrolimus dose among kidney transplant recipients . Iran J. Kidney Dis.10 ( 3 ), 156 – 163 ( 2016 ).
  • de Jonge H , de LoorH , VerbekeK , VanrenterghemY , KuypersDR . In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients . Clin. Pharmacol. Ther.92 ( 3 ), 366 – 375 ( 2012 ).
  • Wang Z , WuS , ChenDet al. Influence of TLR4 rs1927907 locus polymorphisms on tacrolimus pharmacokinetics in the early stage after liver transplantation . Eur. J. Clin. Pharmacol.70 ( 8 ), 925 – 931 ( 2014 ).
  • Bosó V , HerreroMJ , BeaSet al. Increased hospital stay and allograft dysfunction in renal transplant recipients with CYP2C19 AA variant in SNP rs4244285 . Drug Metab. Dispos.41 ( 2 ), 480 – 487 ( 2013 ).
  • Damon C , LuckM , ToullecLet al. predictive modeling of tacrolimus dose requirement based on high-throughput genetic screening . Am. J. Transplant.17 ( 4 ), 1008 – 1019 ( 2016 ).
  • Boivin AA , CardinalH , BaramaAet al. Influence of SLCO1B3 genetic variations on tacrolimus pharmacokinetics in renal transplant recipients . Drug Metab. Pharmacokinet.28 ( 3 ), 274 – 277 ( 2013 ).
  • Jacobson PA , OettingWS , BrearleyAMet al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium . Transplantation91 ( 3 ), 300 – 308 ( 2011 ).
  • Oetting WS , JacobsonPA , IsraniAK . Validation is critical for GWAS-based associations . Am. J. Transplant17 ( 2 ), 318 – 319 ( 2017 ).
  • Oetting WS , WuB , SchladtDPet al. Genome wide association study identifies the common variants in CYP3A4 and CYP3A5 responsible for variation in tacrolimus trough concentration in Caucasian kidney transplant recipients . Pharmacogen. J. ( 2017 ) ( Epub ahead of print ).
  • Israni A , LeducR , HolmesJet al. Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation . Transplantation90 ( 12 ), 1401 – 1408 ( 2010 ).
  • Pulk RA , SchladtDS , OettingWSet al. Multigene predictors of tacrolimus exposure in kidney transplant recipients . Pharmacogenomics16 ( 8 ), 841 – 854 ( 2015 ).
  • Li YR , van SettenJ , VermaSSet al. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies . Genome Med.7 , 90 ( 2015 ).
  • Johnson AD , HandsakerRE , PulitS , NizzariMM , O’DonnellCJ , de BakkerPI. W . SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap . Bioinformatics24 ( 24 ), 2938 – 2939 ( 2008 ).
  • Hewett M , OliverDE , RubinDLet al. PharmGKB: the pharmacogenetics knowledge base . Nucleic Acids Res.30 ( 1 ), 163 – 165 ( 2002 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.