407
Views
0
CrossRef citations to date
0
Altmetric
Review

Big Data in Pharmacogenomics: Current Applications, Perspectives and Pitfalls

, &
Pages 609-620 | Received 12 Nov 2018, Accepted 03 Apr 2019, Published online: 13 Jun 2019

References

  • Nebert DW , ZhangG , VesellES. From Human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab. Rev.40(2), 187–224 (2008).
  • Caudle K , KleinT , HoffmanJet al. Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline Development Process. Curr. Drug Metab.15(2), 209–217 (2014).
  • Xia X . Bioinformatics and drug discovery. Curr. Opin. Biotechnol.5(6), 648–653 (2017).
  • Ji Y , SiY , McMillinGA , LyonE. Clinical pharmacogenomics testing in the era of next generation sequencing: challenges and opportunities for precision medicine. Expert Rev. Mol. Diagn.18(5), 441–421 (2018).
  • Kurdyukov S , BullockM. DNA methylation analysis: choosing the right method. Biology (Basel)5(1), pii:E3(2016).
  • Romanov V , DavidoffSN , MilesAR , GraingerDW , GaleBK , BrooksBD. A critical comparison of protein microarray fabrication technologies. R. Soc. Chem.139(6), 1303–1326 (2014).
  • Petrov A , ShamsS. Microarray image processing and quality control. J. VLSI Signal Process.38, 211–226 (2004).
  • Hemingway H , AsselbergsFW , DaneshJ et al. Big data from electronic health records for early and late translational cardiovascular research: challenges and potential. Eur. Heart J.39(16), 1481–1495 (2017).
  • Caudle KE , DunnenbergerHM , FreimuthRRet al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med.19(2), 215–223 (2017).
  • Goodwin S , McPhersonJD , McCombieWR. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet.17(6), 333–351 (2016).
  • Caboche S , AudebertC , LemoineY , HotD. Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data. BMC Genomics15(1), 1–16 (2014).
  • Numanagic I , MalikicS , PrattVM , SkaarTC , FlockhartDA , SahinalpSC. Cypiripi: exact genotyping of CYP2D6 using high-throughput sequencing data. Bioinformatics31(12), i27–i34 (2015).
  • Meynert AM , BicknellLS , HurlesME , JacksonAP , TaylorMS. Quantifying single nucleotide variant detection sensitivity in exome sequencing. BMC Bioinformatics14(1), (2013).
  • Mahamdallie S , RuarkE , YostS et al. The Quality Sequencing Minimum (QSM): providing comprehensive, consistent, transparent next generation sequencing data quality assurance. Wellcome Open Res.3, 37 (2018).
  • Jennings LJ , ArcilaME , CorlessCet al. Guidelines for validation of next-generation sequencing–based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagnostics19(3), 341–365 (2017).
  • Clark MJ , ChenR , LamHYKet al. Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol.29(10), 72–108 (2014).
  • Zhou Y , Ingelman-SundbergM , LauschkeV. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin. Pharmacol. Ther.102(4), (2017).
  • Niinuma Y , SaitoT , TakahashiMet al. Functional characterization of 32 CYP2C9 allelic variants. Pharmacogenomics J.14(2), 107–114 (2013).
  • Dong Z , JiangL , YangCet al. A robust approach for blind detection of balanced chromosomal rearrangements with whole-genome low-coverage sequencing. Hum. Mutat.35(5), 625–636 (2014).
  • Suzuki T , TsurusakiY , NakashimaMet al. Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing. J. Hum. Genet.59(12), 649–654 (2014).
  • Derouault P , ParfaitB , MoulinasRet al. “COV’COP” allows to detect CNVs responsible for inherited diseases among amplicons sequencing data. Bioinformatics33(10), 1586–1588 (2017).
  • Irizarry RA , HobbsB , CollinF , Beazer-barclayYD , AntonellisKJ , SpeedTP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics May, 249–264 (2003).
  • Zhang Y , LiuT , MeyerCAet al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9(9), R137 (2008).
  • Whirl-Carrillo M , McDonoghE , HerbetJet al. Pharmacogenomics knowledge for personlized medicine. Clin. Pharmacol. Therpeutics92(4), 414–417 (2012).
  • Rees MG , Seashore-ludlowB , CheahJHet al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol.12(2), 109–116 (2016).
  • Seashore-ludlow B , ReesMG , CheahJHet al. Harnessing connectivity in a large-scale small-molecule sensitivity database. Cancer Discov.5(11), 1210–1223 (2015).
  • Basu A , BodycombeNE , CheahJHet al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell154(5), 1151–1161 (2013).
  • Kent WJ , SugnetCW , FureyTSet al. The human genome browser at UCSC. Genome Res.12(6), 996–1006 (2002).
  • Zerbino DR , AchuthanP , AkanniWet al. Ensembl 2018. Nucleic Acids Res.46(D1), D754–D761 (2018).
  • Ogata H , GotoS , SatoK , FujibuchiW , BonoH , KanehisaM. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res.27(1), 29–34 (1999).
  • Kanehisa M , FurumichiM , TanabeM , SatoY , MorishimaK. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.45(D1), D353–D361 (2017).
  • Stark C , BreitkreutzB , RegulyT , BoucherL , BreitkreutzA , TyersM. BioGRID: a general repository for interaction datasets. Nucleic Acids Res.34, 535–539 (2006).
  • Kim RS , GoossensN , HoshidaY. Use of big data in drug development for precision medicine. Expert Rev. Precis. Med. Drug Dev.1(3), 245–253 (2016).
  • Tian Z , HwangT , KuangR. A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge. Bioinformatics25(21), 2831–2838 (2009).
  • Dhruba SR , RahmanR , MatlockK , GhoshS , PalR. Application of transfer learning for cancer drug sensitivity prediction. BMC Bioinformatics19(Suppl.17), 497 (2018).
  • Lek M , KarczewskiKJ , MinikelEVet al. Analysis of protein-coding genetic variation in 60,706 humans. Nature536(7616), 285–291 (2016).
  • Braschi B , DennyP , GrayK et al. Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res.47, 786–792 (2019).
  • Database of Single Nucleotide Polymorphisms (dbSNP) . Bethesda (MD):National Center for Biotechnology Information, National Library of Medicine. www.ncbi.nlm.nih.gov/SNP/.
  • Kalman LV , BlackJL , ClinicM , SwS , BellGC. Pharmacogenetic Allele Nomenclature: International Workgroup recommendations for test result reporting.99(2), 172–185 (2016).
  • Browning SR , ThompsonEA. Detecting rare variant associations by identity-by-descent mapping in case–control studies. Genetics.190( April), 1521–1531 (2012).
  • Xu H , GuanY. Detecting local haplotype sharing and haplotype association. Genetics197( July), 823–838 (2014).
  • Giacomini KM , YeeSW , MushirodaT , WeinshilboumRM , RatainMJ , KuboM. Genome-wide association studies of drug response and toxicity: an opportunity for genome medicine. Nat Rev Drug Discov.16(1), 1–8 (2017).
  • Hodge VJ , AustinJ. A survey of outlier detection methodologies. Artif. Intell. Rev.22, 85–126 (2004).
  • Markou M , SinghS. Novelty detection: a review – part 1: statistical approaches. Signal Processing83, 2481–2497 (2003).
  • Hanson C , CairnsJ , WangL , SinhaS. Principled multi-omic analysis reveals gene regulatory mechanisms of phenotype variation. Genome Res.28(8), 1207–1216 (2018).
  • Richardson S , TsengGC , SunW. Statistical methods in integrative genomics. Annu. Rev. Stat. Its Appl.3(1), 181–209 (2016).
  • Ma’ayan A , RouillardAD , ClarkNR , WangZ , DuanQ , KouY. Lean big data integration in systems biology and systems pharmacology. Trends Pharmacol. Sci.35(9), 450–460 (2014).
  • Chen J , ZhangS. Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics.32, 1724–1732 (2016).
  • Giuliani A . The application of principal component analysis to drug discovery and biomedical data. Drug Discov. Today22(7), 1069–1076 (2017).
  • Bielinski S , OlsonJ , PathakJet al. Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin Proc.89(1), 25–33 (2015).
  • Wu Z , LiW , LiuG , TangY. Network-based methods for prediction of drug-target interactions. 9, 1–14 (2018).
  • Iniesta R , HodgsonK , StahlD et al. Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables. Sci. Rep.8(1), 5530 (2018).
  • Lutz W , SchwartzB , HofmannSG , FisherAJ , HusenK , RubelJA. Using network analysis for the prediction of treatment dropout in patients with mood and anxiety disorders: a methodological proof- of-concept study. Sci. Rep.8(1), 7819 (2018).
  • Regan-Fendt KE , XuJ , DivincenzoM et al. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes. NPJ Syst. Biol. Appl.5(6), doi:10.1038/s41540-019-0085-4 (2019).
  • Huang H-H , DaiJ-G , LiangY. Clinical drug response prediction by using a Lq penalized network-constrained logistic regression method. Cell Physiol Biochem.51(5), 2073–2084 (2018).
  • Li Q , ShiR , IdFL. Drug sensitivity prediction with high- dimensional mixture regression. PLoS One14(2), e0212108 (2019).
  • Ali M , AittokallioT. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys. Rev.39, 31–39 (2019).
  • Yang M , SimmJ , LamCCet al. Linking drug target and pathway activation for effective therapy using multi-task learning. Sci. Rep.8(1), 1–10 (2018).
  • Nie L , LeeKY , VerdunN , DeClaro RA , SridharaR. Dose finding in late-phase drug development. Ther. Innov. Regul. Sci.51(6), 738–743 (2017).
  • Gamazon ER , TrendowskiMR , WenYet al. Gene and MicroRNA perturbations of cellular response to pemetrexed implicate biological networks and enable imputation of response in lung adenocarcinoma. Sci. Rep.8(1), 1–13 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.