163
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Clinical and Genetic Predictors of Secondary Sulfonylurea Failure in Type 2 Diabetes Patients: the Suclingen Study

ORCID Icon, ORCID Icon, &
Pages 587-600 | Received 18 Nov 2019, Accepted 23 Mar 2020, Published online: 29 May 2020

References

  • Cho NH , ShawJE , KarurangaSet al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract.138, 271–281 (2018).
  • American Diabetes Association . Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes – 2020. Diabetes Care43(Suppl. 1), S98–S110 (2020).
  • Khunti K , ChatterjeeS , GersteinHC , ZoungasS , DaviesMJ. Do sulphonylureas still have a place in clinical practice?Lancet Diabetes Endocrinol.6, 821–832 (2018).
  • Song J , YangY , Mauvais-JarvisF , WangY-P , NiuT. KCNJ11, ABCC8 and TCF7L2 polymorphisms and the response to sulfonylurea treatment in patients with Type 2 diabetes: a bioinformatics assessment. BMC Med. Genet.18(1), 64 (2017).
  • Zhou K , DonnellyL , BurchLet al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in Type 2 diabetes: a Go-DARTS study. Clin. Pharmacol. Ther.87(1), 52–56 (2010).
  • Schroner Z , JavorskyM , HaluskovaJet al. Variation in CDKAL1 gene is associated with therapeutic response to sulphonylureas. Physiol. Res.61(2), 177–183 (2012).
  • Li Q , TangT-T , JiangFet al. Polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with Type 2 diabetes. Acta Pharmacol. Sin.38(1), 80–89 (2017).
  • Halban PA , PolonskyKS , BowdenDWet al. β-cell failure in Type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care37(6), 1751–1758 (2014).
  • Maedler K , CarrRD , BoscoD , ZuelligRA , BerneyT , DonathMY. Sulfonylurea induced β-cell apoptosis in cultured human islets. J. Clin. Endocrinol. Metab.90(1), 501–506 (2005).
  • Efanova IB , ZaitsevSV , ZhivotovskyBet al. Glucose and tolbutamide induce apoptosis in pancreatic β-cells: a process dependent on intracellular Ca2+ concentration. J. Biol. Chem.273(50), 33501–33507 (1998).
  • Takahashi A , NagashimaK , HamasakiAet al. Sulfonylurea and glinide reduce insulin content, functional expression of KATP channels and accelerate apoptotic β-cell death in the chronic phase. Diabetes Res. Clin. Pract.77(3), 343–350 (2007).
  • Matthews DR , CullCA , StrattonIM , HolmanRR , TurnerRC. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. Diabet. Med.15(4), 297–303 (1998).
  • Pearson ER , DonnellyLA , KimberCet al. Variation in TCF7L2 influences therapeutic response to sulfonylureas. Diabetes56(8), 2178–2182 (2007).
  • Feng Y , MaoG , RenXet al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese Type 2 diabetic patients. Diabetes Care31(10), 1939–1944 (2008).
  • Holstein A , HahnM , KornerA , StumvollM , KovacsP. TCF7L2 and therapeutic response to sulfonylureas in patients with Type 2 diabetes. BMC Med. Genet.12, 30 (2011).
  • Sesti G , LarattaE , CardelliniMet al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5′-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with Type 2 diabetes. J. Clin. Endocrinol. Metab.91(6), 2334–2339 (2006).
  • El-Sisi AE , HegazySK , MetwallySS , WafaAM , DawoodNA. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in Egyptian patients with Type 2 diabetes. Ther. Adv. Endocrinol. Metab.2(4), 155–164 (2011).
  • Shimajiri Y , YamanaA , MoritaS , FurutaH , FurutaM , SankeT. Kir6.2 E23K polymorphism is related to secondary failure of sulfonylureas in non-obese patients with Type 2 diabetes. J. Diabetes Investig.4(5), 445–449 (2013).
  • Loganadan NK , HuriHZ , VethakkanSR , HusseinZ. Genetic markers predicting sulphonylurea treatment outcomes in Type 2 diabetes patients: current evidence and challenges for clinical implementation. Pharmacogenomics J.16(3), 209–219 (2016).
  • Zhang H , LiuX , KuangH , YiR , XingH. Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in Type 2 diabetes. Diabetes Res. Clin. Pract.77(1), 58–61 (2007).
  • Ministry of Health Malaysia . Clinical practice guidelines management of Type 2 diabetes mellitus (5th edition). (2015). http://www.moh.gov.my/penerbitan/CPG/CPG%20T2DM%202015.pdf
  • Al-Qazaz HK , HassaliMA , ShafieAA , SulaimanSaS , SundramS. The 14-item Michigan Diabetes Knowledge Test: translation and validation study of the Malaysian version. Pract. Diabetes Intl27(6), 238–241a (2010).
  • Hasanah CI , NaingL , RahmanAR. World Health Organization quality of life assessment: brief version in Bahasa Malaysia. Med. J. Malaysia58(1), 79–88 (2003).
  • Diabetes Trials Unit . HOMA calculator (1 May 2015). (2013). https://www.dtu.ox.ac.uk/homacalculator/
  • Khunti S , KhuntiK , SeiduS. Therapeutic inertia in Type 2 diabetes: prevalence, causes, consequences and methods to overcome inertia. Ther. Adv. Endocrinol. Metab.10, 2042018819844694 (2019).
  • Khunti K , WoldenML , ThorstedBL and ersenM , DaviesMJ. Clinical inertia in people with Type 2 diabetes: a retrospective cohort study of more than 80,000 people. Diabetes Care36(11), 3411–3417 (2013).
  • Khunti K , SeiduS. Therapeutic inertia and the legacy of dysglycemia on the microvascular and macrovascular complications of diabetes. Diabetes Care42(3), 349–351 (2019).
  • Ng YP , AhmedR , OoiGS , LauCY , BalasubramanianGP , YapCH. The rate of progression of Type 2 diabetes mellitus to end stage renal disease – a single centred retrospective study from Malaysia. Diabetes Metab. Syndr.12(6), 1025–1030 (2018).
  • Abu Hassan H , TohidH , MohdAmin R , LongBidin MB , MuthupalaniappenL , OmarK. Factors influencing insulin acceptance among Type 2 diabetes mellitus patients in a primary care clinic: a qualitative exploration. BMC Family Pract.14(1), 164 (2013).
  • Lee YK , LeePY , NgCJ. A qualitative study on healthcare professionals’ perceived barriers to insulin initiation in a multi-ethnic population. BMC Family Pract.13(1), 28 (2012).
  • Tan WL , AsaharSF , HarunNL. Insulin therapy refusal among type II diabetes mellitus patients in Kubang Pasu district, the state of Kedah, Malaysia. Singapore Med. J.56(4), 224–227 (2015).
  • Lee YK , NgCJ , LeePYet al. What are the barriers faced by patients using insulin? A qualitative study of Malaysian health care professionals’ views. Patient Prefer. Adherence7, 103–109 (2013).
  • Samuel VT , ShulmanGI. Mechanisms for insulin resistance: common threads and missing links. Cell148(5), 852–871 (2012).
  • Yoon K-H , LeeJ-H , KimJ-Wet al. Epidemic obesity and Type 2 diabetes in Asia. Lancet368(9548), 1681–1688 (2006).
  • Ukpds Group . Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). Lancet352(9131), 837–853 (1998).
  • Group TaC . Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med.358(24), 2560–2572 (2008).
  • Group TaTCCRIDS . Effects of intensive glucose lowering in Type 2 diabetes. N. Engl. J. Med.358(24), 2545–2559 (2008).
  • Hussein Z , KamaruddinNA , ChanSP , JainA , UppalS , BebakarWMW. Hypoglycemia awareness among insulin-treated patients with diabetes in Malaysia: a cohort subanalysis of the HAT study. Diabetes Res. Clin. Pract.133, 40–49 (2017).
  • Hamming KSC , SolimanD , MatemiszLCet al. Coexpression of the Type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+ channel. Diabetes58(10), 2419–2424 (2009).
  • Villareal DT , KosterJC , RobertsonHet al. Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes58(8), 1869–1878 (2009).
  • Chistiakov D , PotapovVA , SmetaninaSA , Bel’chikovaLN , SuplotovaLA , NosikovVV. The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel. Acta Diabetol.48(3), 227–235 (2011).
  • Schroner Z , DobrikovaM , KlimcakovaLet al. Variation in KCNQ1 is associated with therapeutic response to sulphonylureas. Med. Sci. Monit.17(7), Cr392–396 (2011).
  • Haghverdizadeh P , SadatHaerian M , HaghverdizadehP , SadatHaerian B. ABCC8 genetic variants and risk of diabetes mellitus. Gene545(2), 198–204 (2014).
  • Sokolova EA , BondarIA , ShabelnikovaOY , PyankovaOV , FilipenkoML. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) association in Russian diabetes mellitus 2 Type cohort and meta-analysis. PLoS ONE10(5), e0124662 (2015).
  • Haghvirdizadeh P , MohamedZ , AbdullahNA , HaghvirdizadehP , HaerianMS , HaerianBS. KCNJ11: genetic polymorphisms and risk of diabetes mellitus. J. Diabetes Res.2015, 908152 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.