255
Views
0
CrossRef citations to date
0
Altmetric
Review

Genetic Polymorphisms Associated with Acute Lung Injury

&
Pages 1527-1539 | Published online: 17 Sep 2009

Bibliography

  • Goss CH , BrowerRG, HudsonLD, RubenfeldGD, ARDS Network: Incidence of acute lung injury in the United States. Crit. Care Med.31 , 1607–1611 (2003).
  • Bernard GR , ArtigasA, BrighamKL et al.: The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination.Am. J. Respir. Crit. Care Med.149 , 818–824 (1994).
  • Hudson LD , MilbergJA, AnardiD, MaunderRJ: Clinical risks for development of the acute respiratory distress syndrome.Am. J. Respir. Crit. Care Med.151 , 293–301 (1995).
  • Piantadosi CA , SchwartzDA: The acute respiratory distress syndrome.Ann. Intern. Med.141 , 460–470 (2004).
  • ARDS Net: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med.342 , 1301–1308 (2000).
  • Bernard GR , PROWESS study group: Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med.344 , 699–709 (2001).
  • Meduri GU , HeadleyS, KohlerG et al.: Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1β and IL-6 levels are consistent and efficient predictors of outcome over time.Chest107 , 1062–1073 (1995).
  • Donnelly TJ , MeadeP, JagelsM et al.: Cytokine, complement, and endotoxin profiles associated with the development of the adult respiratory distress syndrome after severe injury.Crit. Care Med.22 , 768–776 (1994).
  • Thickett DR , ArmstrongL, MillarAB: A role for vascular endothelial growth factor in acute and resolving lung injury.Am. J. Respir. Crit. Care Med.166 , 1332–1337 (2002).
  • Zhai R , GongMN, ZhouW et al.: Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS.Thorax62 , 718–722 (2007).
  • Prabhakaran P , WareLB, WhiteKE et al.: Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.285 , L20–L28 (2003).
  • Pan T , NielsenLD, AllenMJ et al.: Serum SP-D is a marker of lung injury in rats.Am. J. Physiol. Lung Cell. Mol. Physiol.282 , L284–L832 (2002).
  • Kawut SM , OkunJ, ShimboD et al.: Soluble P-selectin and the risk of primary graft dysfunction after lung transplantation.Chest (2009).
  • Bhandari V , Choo-WingR, LeeCG et al.: Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death.Nat. Med.12 , 1286–1293 (2006).
  • Wang Z , BeachD, SuL, ZhaiR, ChristianiDC: A genome-wide expression analysis in blood identifies pre-elafin as a biomarker in ARDS.Am. J. Respir. Cell Mol. Biol.38 , 724–732 (2008).
  • Wang Z , ChenF, Zhai et al.: Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS ONE4 , 1–10 (2009).
  • Gong MN : Genetic epidemiology of acute respiratory distress syndrome: implications for future prevention and treatment.Clin. Chest Med.27 , 705–724 (2006).
  • Grigoryev DN , FiniganJH, HassounP, GarciaJG: Science review: Searching for gene candidates in acute lung injury.Crit. Care8 , 440–447 (2004).
  • Cho H -Y, Kleeberger SR: Genetic mechanisms of susceptibility to oxidative lung injury in mice. Free Radic. Biol. Med.42 , 433–445 (2007).
  • Fracica PJ , KnappMJ, PiantadosiCA et al.: Responses of baboons to prolonged hyperoxia: physiology and qualitative pathology.J. Appl. Physiol.71 , 2352–2362 (1991).
  • Sackner MA , LandaJ, HirschJ, ZapataA: Pulmonary effects of oxygen breathing. A 6-hour study in normal men.Ann. Intern. Med.82 , 40–43 (1975).
  • Erzurum SC , DanelC, GillissenA, Chu C-S, Trapnell BC, Crystal RG: In vivo antioxidant gene expression in human airway epithelium of normal individuals exposed to 100% O2. J. Appl. Physiol.75 , 1256–1262 (1993).
  • Waring WS , ThomsonAJ, AdwaniSH et al.: Cardiovascular effects of acute oxygen administration in healthy adults.J. Cardiovasc. Pharmacol.42 , 245–250 (2003).
  • Rossi P , TauzinL, WeissM, Rostain J-C, Sainty J-M, Boussuges A: Could hyperoxic ventilation impair oxygen delivery in septic patients? Clin. Physiol. Funct. Imaging27 , 180–184 (2007).
  • Matute-Bello G , FrevertCW, MartinTR: Animal models of acute lung injury.Am. J. Physiol. Lung Cell Mol. Physiol.295 , L379–L399 (2008).
  • Hudak BB , ZhangLY, KleebergerSR: Inter-strain variation in susceptibility to hyperoxic injury of the murine lung.Pharmacogenetics3 , 135–143 (1993).
  • Cho HY , JedlickaAE, ReddySP, ZhangLY, KenslerTW, KleebergerSR: Linkage analysis of susceptibility to hyperoxia: Nrf2 is a candidate gene.Am. J. Respir. Cell Mol. Biol.26 , 42–51 (2002).
  • Cho HY , JedlickaAE, ReddySPM et al.: Role of NRF2 in protection against hyperoxic lung injury in mice.Am. J. Respir. Cell Mol. Biol.26 , 175–182 (2002).
  • Prows DR , LeikaufGD: Quantitative trait analysis of nickel-induced acute lung injury in mice.Am. J. Respir. Cell Mol. Biol.24 , 740–746 (2001).
  • Prows DR , ShertzerHG, DalyMJ, SidmanCL, LeikaufGD: Genetic analysis of ozone-induced acute lung injury in sensitive and resistant strains of mice.Nat. Genet.17 , 471–474 (1997).
  • Bein K , WesselkamperSC, LiuX et al.: Surfactant associated protein B is critical to survival in nickel-induced injury in mice.Am. J. Respir. Cell Mol. Biol.41(2) , 226–236 (2009).
  • Kleeberger SR , LevittRC, ZhangLY: Susceptibility to ozone induced inflammation: II. Separate loci control responses to acute and subacute exposures.Am. J. Physiol.264 , L21–L26 (1993).
  • Kleeberger SR , LevittRC, ZhangLY et al.: Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice.Nat. Genet.17 , 475–478 (1997).
  • Cho HY , MorganDL, BauerAK, KleebergerSR: Signal transduction pathways of tumor necrosis factor-mediated lung injury induced by ozone in mice.Am. J. Respir. Crit. Care Med.175 , 829–839 (2007).
  • Johnson AD , O‘DonnellCJ: An open access database of genome-wide association results.BMC Med. Genet.10 , 6 (2009).
  • Gudmundsson J , SulemP, SteinthorsdottirV et al.: Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes.Nat. Genet.39 , 977–983 (2007).
  • Gudmundsson J , SulemP, ManolescuA et al.: Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24.Nat. Genet.39 , 631–637 (2007).
  • Hofmann S , FrankeA, FischerA et al.: Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis.Nat. Genet.40 , 1103–1106 (2008).
  • Weidinger S , GiegerC, RodriguezE et al.: Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus.PLoS Genet.4 , 8 (2008).
  • McCarthy MI , AbecasisGR, CardonLR et al.: Genome-wide association studies for complex traits: consensus, uncertainty and challenges.Nat. Rev. Genet.9 , 356–369 (2008).
  • Psychiatric GWAS Consortium Coordinating Committee: Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am. J. Psychiatry166 , 540–556 (2009).
  • Elbers CC , van Eijk KR, Franke L et al.: Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genet. Epidemiol.33(5) , 419–431 (2009)
  • Pearson TA , ManolioTA: How to interpret a genome-wide association study.JAMA299 , 1335–1344 (2008).
  • Liao G , WangJ, GuoJ et al.: In silico genetics: identification of a functional element regulating H2-Ea gene expression.Science306 , 690–695 (2004).
  • Pletcher MT , McClurgP, BatalovS et al.: Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse.PLoS Biol.2 , 2159–2169 (2004).
  • Complex Trait Consortium: The collaborative cross, a community resource for the genetic analysis of complex traits. Nat. Genet.36 , 1133–1137 (2004).
  • Grigoryev DN , MaSF, IrizarryRA, YeSQ, QuackenbushJ, GarciaJG: Orthologous gene-expression profiling in multi-species models: search for candidate genes.Genome Biol.5 , R34 (2004).
  • Perkowski S , SunJ, SinghalS et al.: Gene expression profiling of the early pulmonary response to hyperoxia in mice.Am. J. Respir. Cell Mol. Biol.28 , 682–696 (2003).
  • Cho HY , ReddySP, DebiaseA, YamamotoM, KleebergerSR: Gene expression profiling of NRF2-mediated protection against oxidative injury.Free Radic. Biol. Med.38 , 325–343 (2005).
  • Drake TA , SchadtEE, LusisAJ: Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice.Mammal. Genome17 , 466–479 (2006).
  • Li J , BurmeisterM: Genetical genomics: combining genetics with gene expression analysis.Hum. Mol. Genet.14 , R163–R169 (2005).
  • Bystrykh L , WeersingE, DontjeB et al.: Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics‘.Nat. Genet.37 , 225–232 (2005).
  • Mehrabian M , AllayeeH, StocktonJ et al.: Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits.Nat. Genet.37 , 1224–1233 (2005).
  • Mozhui K , CiobanuDC, SchikorskiT, WangX, LuL, WilliamsRW: Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression.PLoS Genet.4(11) , E1000260 (2008).
  • Marshall RP , WebbS, BellinganGJ et al.: Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome.Am. J. Respir. Crit. Care Med.166 , 646–650 (2002).
  • Casey L , KriegerB, KohlerJ, RiceC, OparilS, SzidonP: Decreased serum angiotensin converting enzyme in adult respiratory distress syndrome associated with sepsis: a preliminary report.Crit. Care Med.9 , 651–654 (1981).
  • Fourrier F , ChopinC, WallaertB et al.: Compared evolution of plasma fibronectin and angiotensin-converting enzyme levels in septic ARDS.Chest87 , 191–195 (1985).
  • Imai Y , KubaK, RaoS et al.: Angiotensin-converting enzyme 2 protects from severe acute lung failure.Nature436 , 112–116 (2005).
  • Arndt PG , YoungSK, PochKR et al.: Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophils recruitment through both bradykinin and angiotensin II-regulated pathways.J. Immunol.177 , 7233–7241 (2006).
  • Rigat B , HubertC, Alhenc-GelasF et al.: An insertion/deletion polymorphism in the angiotensin-1-converting enzyme gene accounting for half the variance of serum enzyme levels.J. Clin. Invest.86 , 1343–1346 (1990).
  • Jerng JS , YuCJ, WangHC et al.: Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome.Crit. Care Med.34 , 1001–1006 (2006).
  • Villar J , FloresC, Perez-MendezL et al.: Angiotensin-converting enzyme insertion/deletion polymorphism is not associated with susceptibility and outcome in sepsis and acute respiratory distress syndrome.Intensive Care Med.34 , 488–495 (2008).
  • Bowler RP , NicksM, TranK et al.: Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation.Am. J. Respir. Cell Mol. Biol.31 , 432–439 (2004).
  • Arcaroli JJ , HokansonJE, AbrahamE et al.: Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality.Am. J. Respir. Crit. Care Med.179 , 105–112 (2009).
  • Neidhardt R , KeelM, SteckholzerU et al.: Relationship of interleukin-10 plasma levels to severity of injury and clinical outcome in injured patients.J. Trauma42 , 863–871 (1997).
  • Crawley E , KayR, SillibourneJ et al.: Polymorphic haplotypes of the interleukin-10 5´ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile arthritis.Arthritis Rheum.42 , 1101–1108 (1999).
  • Schroder O , LaunRA, HeldB, EkkernkampA, SchulteKM: Association of interleukin-10 promoter polymorphism with the incidence of multiple organ dysfunction following major trauma: results of a prospective pilot study.Shock21 , 306–310 (2004).
  • Armstrong L , MillarAB: Relative production of tumor necrosis factor a and interleukin-10 in adult respiratory distress syndrome.Thorax52 , 442–446 (1997).
  • Parson PE , MossM, VanniceJL et al.: Circulating IL-1ra and IL-10 levels are increased but do not predict the development of acute respiratory distress syndrome in at-risk patients.Am. J. Resp. Crit. Care Med.155 , 1469–1473 (1997).
  • Gong MN , ThompsonBT, WilliamsPL et al.: Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome.Eur. Respir. J.27 , 674–681 (2006).
  • Summerfield JA , SumiyaM, LevinM, TurnerMW: Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series.BMJ314 , 1229–1232 (1997).
  • Fidler KJ , WilsonP, DaviesJC et al.: Increased incidence and severity of the systemic inflammatory response syndrome in patients deficient in mannose-binding lectin.Intensive Care Med.30 , 1438–1445 (2004).
  • Gong MN , ZhouW, WilliamsPL et al.: Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome.Crit. Care Med.35 , 48–56 (2007).
  • Goeckeler ZM , WysolmerskiRB: Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation.J. Cell Biol.130 , 613–627 (1995).
  • Wainwright MS , RossiJ, SchavockyJ et al.: Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment.Proc. Natl Acad. Sci. USA100 , 6233–6238 (2003).
  • Eutamene H , TheodorouV, SchmidlinF et al.: LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK.Eur. Resp. J.25 , 789–796 (2005).
  • Gao L , GrantA, HalderI et al.: Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury.Am. J. Respir. Cell Mol. Biol.34 , 487–495 (2006).
  • Christie JD , MaSF, AplencR et al.: Variation in the myosin light chain kinase gene is associated with development of acute lung injury after major trauma.Crit. Care Med.36 , 2794–2800 (2008).
  • Itoh K , TongKI, YamamotoM: Molecular mechanism activating Nrf2–Keap1 pathway in regulation of adaptive response to electrophiles.Free Radic. Biol. Med.36 , 1208–1213 (2004).
  • Kensler TW , WakabayashiN, BiswalS: Cell survival responses to environmental stresses via the Keap1–Nrf2–ARE pathway.Annu. Rev. Pharmacol. Toxicol.47 , 89–116 (2007).
  • Marzec JM , ChristieJD, ReddySP et al.: Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury.FASEB J.21 , 2237–2246 (2007).
  • Ross D , BeallH, TraverRD, SiegelD, PhillipsRM, GibsonNW: Bioactivation of quinines by DT-diaphorase: molecular, biochemical, and chemical studies.Oncol. Res.6 , 493–500 (1994).
  • Lim JH , Kim K-M, Kim SW, Hwang O, Choi HJ: Bromocriptine activates NQO1 via Nrf2-PI3K/Akt signaling: novel cytoprotective mechanism against oxidative damage. Pharmacol. Res.57 , 325–331 (2008).
  • Jaiswal AK : Regulation of genes encoding NAD(P)H:quinone oxidoreductases.Free Radic. Biol. Med.29 , 254–262 (2000).
  • Korashy HM , BrocksDR, El-KadiAOS: Induction of the NAD(P)H:quinone oxidoreductase 1 by ketoconazole and itraconazole; a mechanism of cancer chemoprotection.Cancer Lett.258 , 135–143 (2007).
  • Reddy AJ , ChristieJD, AplencR, FuchsB, LankenPN, KleebergerSR: Association of human NAD(P)H:quinone oxidoreductase 1 (NQO1) polymorphism with development of acute lung injury.J. Cell. Mol. Med. (2009) (Epub ahead of print).
  • Nemeth E , MillarLK, Bryant-GreenwoodG: Fetal membrane distension:II. Differentially expressed genes regulated by acute distension in vitro.Am. J. Obstet. Gynecol.182 , 60–67 (2007).
  • Ognjanovic S , BaoS, YamamotoSY et al.: Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes.J. Mol. Endocrinol.26 , 107–117 (2001).
  • Jia SH , LiY, ParodoJ et al.: Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis.J. Clin. Invest.113 , 1318–1327 (2004).
  • Ye SQ , SimonBA, MaloneyJP et al.: Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury.Am. J. Respir. Crit. Care Med.171 , 361–370 (2005).
  • Bajwa EK , YuCL, GongMN et al.: Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome.Crit. Care Med.35 , 1290–1295 (2007).
  • Eisner MD , ParsonsPE, MatthayMA et al.: Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury.Thorax58 , 983–988 (2003).
  • Doyle IR , BerstenAD, NicholasTE: Surfactant proteins-A and -B are elevated in plasma of patients with acute respiratory failure.Am. J. Respir. Crit. Care Med.156 , 1217–1229 (1997).
  • Floros J , VeletzaSV, KotikalapudiP et al.: Dinucleotide repeats in the human surfactant protein-B gene and respiratory-distress syndrome.Biochem. J.305 , 583–590 (1995).
  • Gong MN , WeiZ, Xu L-L et al.: Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. Chest125 , 203–211 (2004).
  • Quasney MW , WatererGW, DahmerMK et al.: Association between surfactant protein-B +1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia.Crit. Care Med.32 , 1115–1119 (2004).
  • Currier PF , GongMN, ZhaiR et al.: Surfactant protein-B polymorphisms and mortality in the acute respiratory distress syndrome.Crit. Care Med.36 , 2511–2516 (2008).
  • Seybold J , ThomasD, WitzenrathM et al.: Tumor necrosis factor-α-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability.Blood105 , 3569–3576 (2005).
  • Gong MN , ZhouW, WilliamsPL et al.: -308GA and TNFB polymorphisms in acute respiratory distress syndrome.Eur. Resp. J.26 , 382–289 (2005).
  • Corne J , ChuppG, LeeCG et al.: IL-13 stimulates vascular endothelial growth factor and protects against hyperoxic lung injury.J. Clin. Invest.106 , 783–791 (2000).
  • Medford AR , KeenLJ, BidwellJL, MillarAB: Vascular endothelial growth factor gene polymorphism and acute respiratory distress syndrome.Thorax60 , 244–248 (2005).
  • Morgan TM , KrumholzHM, LiftonRP, SpertusJA: Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study.JAMA297 , 1551–1561 (2007)
  • Daly AK : Candidate gene case-control studies.Pharmacogenomics4 , 127–139 (2003).
  • Keating BJ , TischfieldS, MurraySS et al.: Concept, design and implementation of a cardiovascular gene-centric 50 K SNP array for large-scale genomic association studies.PLoS ONE3 , 1–9 (2008).
  • Rao DC : An overview of the genetic dissection of complex traits.Adv. Genet.60 , 3–34 (2008).
  • Sheu CC , ZhaiR, SuL et al.: Sex-specific association of epidermal growth factor gene polymorphisms with acute respiratory distress syndrome.Eur. Respir. J.33 , 543–550 (2009).
  • Moradi M , MojtahedzadehM, MandegariA et al.: The role of glutathione-S-transferase polymorphisms on clinical outcome of ALI/ARDS patients treated with N-acetylcysteine.Respir. Med.103 , 434–441 (2009).
  • Zhai R , ZhouW, GongMN et al.: Inhibitor κB-α haplotype GTC is associated with susceptibility to acute respiratory distress syndrome in Caucasians.Crit. Care Med.35 , 893–898 (2007).
  • Flores C , MaSF, MaressoK, WadeMS, VillarJ, GarciaJG: IL6 gene-wide haplotype is associated with susceptibility to acute lung injury.Transl. Res.152 , 11–17 (2008).
  • Hildebrand F , StuhrmannM, van Giensven M et al.: Association of IL-8-251A/T polymorphism with incidence of acute respiratory distress syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine37 , 192–199 (2007).
  • Gao L , FloresC, Fan-MaS et al.: Macrophage migration inhibitory factor in acute lung injury: expression, biomarker, and associations.Transl. Res.150 , 18–29 (2007).
  • Adamzik M , FreyUH, RiemanK et al.: Insertion/deletion polymorphism in the promoter of NFKB1 influences severity but not mortality of acute respiratory distress syndrome.Intensive Care Med.33 , 1199–1203 (2007).
  • Sapru A , HansenH, AjayiT et al.: 4G/5G polymorphism of plasminogen activator inhibitor-1 gene is associated with mortality in intensive care unit patients with severe pneumonia.Anesthesiology110 , 1086–1091 (2009).
  • Wurfel MM , GordonAC, HoldenTD et al.: Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis.Am. J. Respir. Crit. Care Med.178 , 710–720 (2008).
  • Arcaroli J , SankoffJ, LiuN, AllisonDB, MaloneyJ, AbrahamE: Association between urokinase haplotypes and outcome from infection-associated acute lung injury.Intensive Care Med.34 , 300–307 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.