535
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics in the Treatment of Inflammatory Bowel Disease

, &
Pages 421-437 | Published online: 17 Mar 2010

Bibliography

  • Lowenberg M , PeppelenboschM, HommesD: Biological therapy in the management of recent-onset Crohn‘s disease: why, when and how?Drugs66(11) , 1431–1439 (2006).
  • Hyams JS , MarkowitzJF: Can we alter the natural history of Crohn disease in children?.J. Pediatr. Gastroenterol. Nutr.40(3) , 262–272 (2005).
  • McGuckin MA , EriR, SimmsLA et al.: Intestinal barrier dysfunction in inflammatory bowel diseases.Inflamm. Bowel Dis.15(1) , 100–113 (2009).
  • Sim E , LackN, WangCJ et al.: Arylamine N-acetyltransferases: structural and functional implications of polymorphisms.Toxicology254(3) , 170–183 (2008).
  • Azad Khan AK , NurazzamanM, TrueloveSC: The effect of the acetylator phenotype on the metabolism of sulphasalazine in man.J. Med. Genet.20(1) , 30–36 (1983).
  • Lück H , KinzigM, JetterA, FuhrU, SörgelF: Mesalazine pharmacokinetics and NAT2 phenotype.Eur. J. Clin. Pharmacol.65(1) , 47–54 (2009).
  • Hickman D , PopeJ, PatilSD et al.: Expression of arylamine N-acetyltransferase in human intestine.Gut42(3) , 402–409 (1998).
  • Das KM , EastwoodMA, McManusJP, SircusW: The metabolism of salicylazo-sulphapyridine in ulcerative colitis. I. The relationship between metabolites and the response to treatment in inpatients.Gut14(8) , 631–641 (1973).
  • Tanigawara Y , KitaT, AoyamaN et al.: N-acetyltransferase 2 genotype-related sulfapyridine acetylation and its adverse events.Biol. Pharm. Bull.25(8) , 1058–1062 (2002).
  • Gunnarsson I , KanerudL, PetterssonE, LundbergI, LindbladS, RingertzB: Predisposing factors in sulphasalazine-induced systemic lupus erythematosus.Br. J. Rheumatol.36(10) , 1089–1094 (1997).
  • Chen M , XiaB, ChenB et al.: N-acetyltransferase 2 slow acetylator genotype associated with adverse effects of sulphasalazine in the treatment of inflammatory bowel disease.Can. J. Gastroenterol.21(3) , 155–158 (2007).
  • Rahav G , Zylber-KatzE, RachmilewitzD, LevyM: Relationship between the acetylator phenotype, plasma sulfapyridine levels and adverse effects during treatment with salicylazosulfapyridine in patients with chronic bowel diseases.Isr. J. Med. Sci.26(1) , 31–34 (1990).
  • Ohtani T , HiroiA, SakuraneM, FurukawaF: Slow acetylator genotypes as a possible risk factor for infectious mononucleosis-like syndrome induced by salazosulfapyridine.Br. J. Dermatol.148(5) , 1035–1039 (2003).
  • Ricart E , TaylorWR, LoftusEV et al.: N-acetyltransferase 1 and 2 genotypes do not predict response or toxicity to treatment with mesalamine and sulfasalazine in patients with ulcerative colitis.Am. J. Gastroenterol.97(7) , 1763–1768 (2002).
  • Wadelius M , StjernbergE, WiholmBE, RaneA: Polymorphisms of NAT2 in relation to sulphasalazine-induced agranulocytosis.Pharmacogenetics10(1) , 35–41 (2000).
  • Ansari A , ArenasM, GreenfieldSM et al.: Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease.Aliment Pharmacol. Ther.28(8) , 973–983 (2008).
  • Hausmann M , PaulG, MenzelK et al.: NAT1 genotypes do not predict response to mesalamine in patients with ulcerative colitis.Z. Gastroenterol.46(3) , 259–265 (2008).
  • Munkholm P , LangholzE, DavidsenM, BinderV: Frequency of glucocorticoid resistance and dependency in Crohn‘s disease.Gut35(3) , 360–362 (1994).
  • Faubion WA Jr, Loftus EV Jr, Harmsen WS, Zinsmeister AR, Sandborn WJ: The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology121(2) , 255–260 (2001).
  • Barnes PJ , AdcockIM: Glucocorticoid resistance in inflammatory diseases.Lancet373(9678) , 1905–1917 (2009).
  • Creed TJ , ProbertCS: Review article: steroid resistance in inflammatory bowel disease – mechanisms and therapeutic strategies.Aliment Pharmacol. Ther.25(2) , 111–122 (2007).
  • Okamura N , SakaedaT, OkamuraK: Pharmacogenomics of MDR and MRP subfamilies.Personalized Medicine1(1) , 85–104 (2004).
  • Ueda K , OkamuraN, HiraiM et al.: Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone.J. Biol. Chem.267(34) , 24248–24252 (1992).
  • Farrell RJ , MenconiMJ, KeatesAC, KellyCP: P-glycoprotein-170 inhibition significantly reduces cortisol and ciclosporin efflux from human intestinal epithelial cells and T lymphocytes.Aliment. Pharmacol. Ther.16(5) , 1021–1031 (2002).
  • Jamroziak K , RobakT: Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies.Hematology9(2) , 91–105 (2004).
  • Onnie CM , FisherSA, PattniR et al.: Associations of allelic variants of the multidrug resistance gene (ABCB1 or MDR1) and inflammatory bowel disease and their effects on disease behavior: a case–control and meta-analysis study.Inflamm. Bowel Dis.12(4) , 263–271 (2006).
  • Urcelay E , MendozaJL, MartinMC et al.: MDR1 gene: susceptibility in Spanish Crohn‘s disease and ulcerative colitis patients.Inflamm. Bowel Dis.12(1) , 33–37 (2006).
  • Farrell RJ , MurphyA, LongA et al.: High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy.Gastroenterology118(2) , 279–288 (2000).
  • Potocnik U , FerkoljI, GlavacD, DeanM: Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis.Genes Immun.5(7) , 530–539 (2004).
  • Cucchiara S , LatianoA, PalmieriO et al.: Polymorphisms of tumor necrosis factor-α but not MDR1 influence response to medical therapy in pediatric-onset inflammatory bowel disease.J. Pediatr. Gastroenterol. Nutr.44(2) , 171–179 (2007).
  • Markova S , NakamuraT, MakimotoH et al.: IL-1β genotype-related effect of prednisolone on IL-1β production in human peripheral blood mononuclear cells under acute inflammation.Biol. Pharm. Bull.30(8) , 1481–1487 (2007).
  • Markova S , NakamuraT, SakaedaT et al.: Genotype-dependent down-regulation of gene expression and function of MDR1 in human peripheral blood mononuclear cells under acute inflammation.Drug Metab. Pharmacokinet.21(3) , 194–200 (2006).
  • Farrell RJ , KelleherD: Glucocorticoid resistance in inflammatory bowel disease.J. Endocrinol.178(3) , 339–346 (2003).
  • Adcock IM , LaneSJ: Mechanisms of steroid action and resistance in inflammation. Corticosteroid-insensitive asthma: molecular mechanisms.J. Endocrinol.178(3) , 347–355 (2003).
  • Raddatz D , MiddelP, BockemuhlM et al.: Glucocorticoid receptor expression in inflammatory bowel disease: evidence for a mucosal down-regulation in steroid-unresponsive ulcerative colitis.Aliment. Pharmacol. Ther.19(1) , 47–61 (2004).
  • Flood L , LöfbergR, StiernaP, WikströmAC: Glucocorticoid receptor mRNA in patients with ulcerative colitis: a study of responders and nonresponders to glucocorticosteroid therapy.Inflamm. Bowel Dis.7(3) , 202–209 (2001).
  • Kam JC , SzeflerSJ, SursW, SherER, LeungDY: Combination IL-2 and IL-4 reduces glucocorticoid receptor-binding affinity and T cell response to glucocorticoids.J. Immunol.151(7) , 3460–3466 (1993).
  • Honda M , OriiF, AyabeT et al.: Expression of glucocorticoid receptor β in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis.Gastroenterology118(5) , 859–866 (2000).
  • Towers R , NaftaliT, GabayG, CarlebachM, KleinA, NovisB: High levels of glucocorticoid receptors in patients with active Crohn‘s disease may predict steroid resistance.Clin. Exp. Immunol.141(2) , 357–362 (2005).
  • Leung DY , HamidQ, VotteroA et al.: Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor β.J. Exp. Med.186(9) , 1567–1574 (1997).
  • Hausmann M , HerfarthH, SchölmerichJ, RoglerG: Glucocorticoid receptor isoform expression does not predict steroid treatment response in IBD.Gut56(9) , 1328–1329 (2007).
  • Brogan IJ , MurrayIA, CerilloG, NeedhamM, WhiteA, DavisJR: Interaction of glucocorticoid receptor isoforms with transcription factors AP-1 and NF-κB: lack of effect of glucocorticoid receptor β.Mol. Cell Endocrinol.157(1–2) , 95–104 (1999).
  • Pujols L , MullolJ, PerezM et al.: Expression of the human glucocorticoid receptor α and β isoforms in human respiratory epithelial cells and their regulation by dexamethasone.Am. J. Respir. Cell Mol. Biol.24(1) , 49–57 (2001).
  • Koyano S , SaitoY, NaganoM et al.: Functional analysis of three genetic polymorphisms in the glucocorticoid receptor gene.J. Pharmacol. Exp. Ther.307(1) , 110–116 (2003).
  • De Iudicibus S , StoccoG, MartelossiS et al.: Association of BclI polymorphism of the glucocorticoid receptor gene locus with response to glucocorticoids in inflammatory bowel disease.Gut56(9) , 1319–1320 (2007).
  • Lane SJ , ArmJP, StaynovDZ, LeeTH et al.: Chemical mutational analysis of the human glucocorticoid receptor cDNA in glucocorticoid-resistant bronchial asthma.Am. J. Respir. Cell Mol. Biol.11(1) , 42–48 (1994).
  • Raddatz D , BockemuhlM, RamadoriG: Quantitative measurement of cytokine mRNA in inflammatory bowel disease: relation to clinical and endoscopic activity and outcome.Eur. J. Gastroenterol. Hepatol.17(5) , 547–557 (2005).
  • Ishiguro Y : Mucosal proinflammatory cytokine production correlates with endoscopic activity of ulcerative colitis.J. Gastroenterol.34(1) , 66–74 (1999).
  • Creed TJ , LeeRW, NewcombPV, di Mambro AJ, Raju M, Dayan CM: The effects of cytokines on suppression of lymphocyte proliferation by dexamethasone. J. Immunol.183(1) , 164–171 (2009).
  • Walker KB , PotterJM, HouseAK: Interleukin 2 synthesis in the presence of steroids: a model of steroid resistance.Clin. Exp. Immunol.68(1) , 162–167 (1987).
  • Lee RW , CreedTJ, SchewitzLP et al.: CD4+CD25(int) T cells in inflammatory diseases refractory to treatment with glucocorticoids.J. Immunol.179(11) , 7941–7948 (2007).
  • Goleva E , KisichKO, LeungDY: A role for STAT5 in the pathogenesis of IL-2-induced glucocorticoid resistance.J. Immunol.169(10) , 5934–5940 (2002).
  • Adcock IM , LaneSJ, BrownCR, LeeTH, BarnesPJ: Abnormal glucocorticoid receptor-activator protein 1 interaction in steroid-resistant asthma.J. Exp. Med.182(6) , 1951–1958 (1995).
  • Orii F , AshidaT, NomuraM et al.: Quantitative analysis for human glucocorticoid receptor α/β mRNA in IBD.Biochem. Biophys. Res. Commun.296(5) , 1286–1294 (2002).
  • Lane SJ , AdcockIM, RichardsD, HawrylowiczC, BarnesPJ, LeeTH: Corticosteroid-resistant bronchial asthma is associated with increased c-fos expression in monocytes and T lymphocytes.J. Clin. Invest.102(12) , 2156–2164 (1998).
  • Eklund BI , MobergM, BergquistJ, MannervikB et al.: Divergent activities of human glutathione transferases in the bioactivation of azathioprine.Mol. Pharmacol.70(2) , 747–754 (2006).
  • Kaplowitz N : Enzymatic thiolysis of azathioprine in vitro.Biochem. Pharmacol.25(21) , 2421–2426 (1976).
  • Watanabe A , HobaraN, NagashimaH: Demonstration of enzymatic activity converting azathioprine to 6-mercaptopurine.Acta Med. Okayama32(3) , 173–179 (1978).
  • De Miranda P , BeachamLM 3rd, Creagh TH, Elion GB: The metabolic fate of the methylnitroimidazole moiety of azathioprine in the rat. J. Pharmacol. Exp. Ther.187(3) , 588–601 (1973).
  • Kalra S , PaulMK, BalaramH, MukhopadhyayAK: Application of HPLC to study the kinetics of a branched bi-enzyme system consisting of hypoxanthine-guanine phosphoribosyltransferase and xanthine oxidase – an important biochemical system to evaluate the efficiency of the anticancer drug 6-mercaptopurine in ALL cell line.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.850(1–2) , 7–14 (2007).
  • Derijks LJ , GilissenLP, HooymansPM et al.: Review article: thiopurines in inflammatory bowel disease.Aliment. Pharmacol. Ther.24(5) , 715–729 (2006).
  • Gisbert JP , NiñoP, RodrigoL, CaraC, GuijarroLG: Thiopurine methyltransferase (TPMT) activity and adverse effects of azathioprine in inflammatory bowel disease: long-term follow-up study of 394 patients.Am. J. Gastroenterol.101 , 1–8 (2006).
  • Colombel JF , FerrariN, DebuysereH et al.: Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn‘s disease and severe myelosuppression during azathioprine therapy.Gastroenterology118(6) , 1025–1030 (2000).
  • Ujiie S , SasakiT, MizugakiM, IshikawaM, HiratsukaM: Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2–*24).Pharmacogenet. Genomics18(10) , 887–893 (2008).
  • Garat A , CauffiezC, RenaultN et al.: Characterisation of novel defective thiopurine S-methyltransferase allelic variants.Biochem. Pharmacol.76(3) , 404–415 (2008).
  • Kham SK , SohCK, AwDC, YeohAE: TPMT*26 (208F-->L), a novel mutation detected in a Chinese.Br. J. Clin. Pharmacol.68(1) , 120–123 (2009).
  • Salavaggione OE , WangL, WiepertM, YeeVC, WeinshilboumRM: Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics.Pharmacogenet. Genomics15(11) , 801–815 (2005).
  • Collie-Duguid ES , PritchardSC, PowrieRH et al.: The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations.Pharmacogenetics9(1) , 37–42 (1999).
  • Kumagai K , HiyamaK, IshiokaS et al.: Allelotype frequency of the thiopurine methyltransferase (TPMT) gene in Japanese.Pharmacogenetics11(3) , 275–278 (2001).
  • Evans WE : Comprehensive assessment of thiopurine S-methyltransferase (TPMT) alleles in three ethnic populations.J. Pediatr. Hematol. Oncol.24(5) , 335–336 (2002).
  • Gardiner SJ , GearryRB, BarclayML, BeggEJ: Two cases of thiopurine methyltransferase (TPMT) deficiency – a lucky save and a near miss with azathioprine.Br. J. Clin. Pharmacol.62(4) , 473–476 (2006).
  • Ansari A , HassanC, DuleyJ et al.: Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease.Aliment. Pharmacol. Ther.16(10) , 1743–1750 (2002).
  • Bloomfeld RS , OnkenJE: Mercaptopurine metabolite results in clinical gastroenterology practice.Aliment. Pharmacol. Ther.17(1) , 69–73 (2003).
  • Kwan LY , DevlinSM, MirochaJM, PapadakisKA: Thiopurine methyltransferase activity combined with 6-thioguanine metabolite levels predicts clinical response to thiopurines in patients with inflammatory bowel disease.Dig. Liver Dis.40(6) , 425–432 (2008).
  • Dubinsky MC , YangH, HassardPV et al.: 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease.Gastroenterology122(4) , 904–915 (2002).
  • Cuffari C , DassopoulosT, TurnboughL, ThompsonRE, BaylessTM: Thiopurine methyltransferase activity influences clinical response to azathioprine in inflammatory bowel disease.Clin. Gastroenterol. Hepatol.2(5) , 410–417 (2004).
  • Sparrow MP , HandeSA, FriedmanS, CaoD, HanauerSB: Effect of allopurinol on clinical outcomes in inflammatory bowel disease nonresponders to azathioprine or 6-mercaptopurine.Clin. Gastroenterol. Hepatol.5(2) , 209–214 (2007).
  • Ansari A , ElliottT, BaburajanB et al.: Long term outcome of using allopurinol co-therapy as a strategy for overcoming thiopurine hepatotoxicity in treating inflammatory bowel disease.Aliment. Pharmacol. Ther.28(6) , 734–741 (2008).
  • Cao H , HegeleRA: DNA polymorphisms in ITPA including basis of inosine triphosphatase deficiency.J. Hum. Genet.47(11) , 620–622 (2002).
  • Marsh S , KingCR, AhluwaliaR, McLeodHL: Distribution of ITPA P32T alleles in multiple world populations.J. Hum. Genet.49(10) , 579–581 (2004).
  • De Ridder L , van Dieren JM, van Deventer HJ et al.: Pharmacogenetics of thiopurine therapy in paediatric IBD patients. Aliment. Pharmacol. Ther.23(8) , 1137–1141 (2006).
  • Breen DP , MarinakiAM, ArenasM, HayesPC: Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation.Liver Transpl.11(7) , 826–833 (2005).
  • Marinaki AM , AnsariA, DuleyJA et al.: Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase).Pharmacogenetics14(3) , 181–187 (2004).
  • von Ahsen N , ArmstrongVW, BehrensC et al.: Association of inosine triphosphatase 94C>A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study.Clin. Chem.51(12) , 2282–2288 (2005).
  • Gearry RB , RobertsRL, BarclayML, KennedyMA: Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine.Pharmacogenetics14(11) , 779–781 (2004).
  • van Dieren JM , van Vuuren AJ, Kusters JG, Nieuwenhuis EE, Kuipers EJ, van der Woude CJ: ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut54(11) , 1664 (2005).
  • Hindorf U , LindqvistM, PetersonC et al.: Pharmacogenetics during standardised initiation of thiopurine treatment in inflammatory bowel disease.Gut55(10) , 1423–1431 (2006).
  • Brouwer C , MarinakiAM, LambooyLH, DuleyJA, Shobowale-BakreM, De Abreu RA: Pitfalls in the determination of mutant alleles of the thiopurine methyltransferase gene. Leukemia15(11) , 1792–1793 (2001).
  • Duley JA , MarinakiAM, ArenasM, FlorinTH: Do ITPA and TPMT genotypes predict the development of side effects to AZA?.Gut55(7) , 1048–1049 (2006).
  • Zelinkova Z , DerijksLJ, StokkersPC et al.: Inosine triphosphate pyrophosphatase and thiopurine S-methyltransferase genotypes relationship to azathioprine-induced myelosuppression.Clin. Gastroenterol. Hepatol.4(1) , 44–49 (2006).
  • Hawwa AF , MillershipJS, CollierPS et al.: Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine.Br. J. Clin. Pharmacol.66(4) , 517–528 (2008).
  • Allorge D , HamdanR, BrolyF, LibersaC, ColombelJF: ITPA genotyping test does not improve detection of Crohn‘s disease patients at risk of azathioprine/6-mercaptopurine induced myelosuppression.Gut54(4) , 565 (2005).
  • Kurzawski M , DziewanowskiK, LenerA, DrozdzikM: TPMT but not ITPA gene polymorphism influences the risk of azathioprine intolerance in renal transplant recipients.Eur. J. Clin. Pharmacol.65(5) , 533–540 (2009).
  • Uchiyama K , NakamuraM, KubotaT, YamaneT, FujiseK, TajiriH: Thiopurine S-methyltransferase and inosine triphosphate pyrophosphohydrolase genes in Japanese patients with inflammatory bowel disease in whom adverse drug reactions were induced by azathioprine/6-mercaptopurine treatment.J. Gastroenterol.44(3) , 197–203 (2009).
  • Stocco G , CheokMH, CrewsKR et al.: Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia.Clin. Pharmacol. Ther.85(2) , 164–172 (2009).
  • Bierau J , LindhoutM, BakkerJA: Pharmacogenetic significance of inosine triphosphatase.Pharmacogenomics8(9) , 1221–1228 (2007).
  • Rashidi MR , BeedhamC, SmithJS, DavaranS: In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase.Drug Metab. Pharmacokinet.22(4) , 299–306 (2007).
  • Al Hadithy AF , de Boer NK, Derijks LJ, Escher JC, Mulder CJ, Brouwers JR: Thiopurines in inflammatory bowel disease: pharmacogenetics, therapeutic drug monitoring and clinical recommendations. Dig. Liver Dis.37(4) , 282–297 (2005).
  • Ansari A , AslamZ, de Sica A et al.: Influence of xanthine oxidase on thiopurine metabolism in Crohn‘s disease. Aliment. Pharmacol. Ther.28(6) , 749–757 (2008).
  • Relling MV , LinJS, AyersGD, EvansWE: Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities.Clin. Pharmacol. Ther.52(6) , 643–658 (1992).
  • Guerciolini R , SzumlanskiC, WeinshilboumRM: Human liver xanthine oxidase: nature and extent of individual variation.Clin. Pharmacol. Ther.50(6) , 663–672 (1991).
  • Yamaguchi Y , MatsumuraT, IchidaK, OkamotoK, NishinoT: Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate.J. Biochem. (Tokyo)141(4) , 513–524 (2007).
  • Kudo M , MotekiT, SasakiT et al.: Functional characterization of human xanthine oxidase allelic variants.Pharmacogenet. Genomics18(3) , 243–251 (2008).
  • Zimm S , CollinsJM, O‘NeillD, ChabnerBA, PoplackDG: Inhibition of first-pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol.Clin. Pharmacol. Ther.34(6) , 810–817 (1983).
  • Harrison R : Structure and function of xanthine oxidoreductase: where are we now?.Free Radic. Biol. Med.33(6) , 774–797 (2002).
  • Smith MA , MarinakiAM, ArenasM et al.: Novel pharmacogenetic markers for treatment outcome in azathioprine-treated inflammatory bowel disease.Aliment. Pharmacol. Ther.30(4) , 375–384 (2009).
  • Kitamura S , SugiharaK, OhtaS: Drug-metabolizing ability of molybdenum hydroxylases.Drug Metab. Pharmacokinet.21(2) , 83–98 (2006).
  • Keuzenkamp-Jansen CW , van Baal JM, de Abreu RA, de Jong JG, Zuiderent R, Trijbels JM: Detection and identification of 6-methylmercapto-8-hydoxypurine, a major metabolite of 6-mercaptopurine, in plasma during intravenous administration. Clin. Chem.42(3) , 380–386 (1996).
  • Al-Salmy HS : Individual variation in hepatic aldehyde oxidase activity.IUBMB Life51(4) , 249–253 (2001).
  • Sugihara K , KitamuraS, TatsumiK, AsaharaT, DohiK: Differences in aldehyde oxidase activity in cytosolic preparations of human and monkey liver.Biochem. Mol. Biol. Int.41(6) , 1153–1160 (1997).
  • Schwarz G : Molybdenum cofactor biosynthesis and deficiency.Cell Mol. Life Sci.62(23) , 2792–2810 (2005).
  • Per H , GümüşH, IchidaK, CağlayanO, KumandaşS: Molybdenum cofactor deficiency: clinical features in a Turkish patient.Brain Dev.29(6) , 365–368 (2007).
  • Peretz H , NaamatiMS, LevartovskyD et al.: Identification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the human molybdenum cofactor sulfurase (HMCS) associated with type II classical xanthinuria.Mol. Genet. Metab.91(1) , 23–29 (2007).
  • Haglund S , TaipalensuuJ, PetersonC, AlmerS: IMPDH activity in thiopurine-treated patients with inflammatory bowel disease – relation to TPMT activity and metabolite concentrations.Br. J. Clin. Pharmacol.65(1) , 69–77 (2007).
  • Roberts RL , GearryRB, BarclayML, KennedyMA: IMPDH1 promoter mutations in a patient exhibiting azathioprine resistance.Pharmacogenomics J.7 , 312–317 (2006).
  • Rosman M , LeeMH, CreaseyWA, SartorelliAC: Mechanisms of resistance to 6-thiopurines in human leukemia.Cancer Res.34(8) , 1952–1956 (1974).
  • Rosman M , WilliamsHE: Leukocyte purine phosphoribosyltransferases in human leukemias sensitive and resistant to 6-thiopurines.Cancer Res.33(6) , 1202–1209 (1973).
  • Hobara N , WatanabeA: Impaired metabolism of azathioprine in carbon tetrachloride-injured rats.Hepatogastroenterology28(4) , 192–194 (1981).
  • Kaplowitz N : Interaction of azathioprine and glutathione in the liver of the rat.J. Pharmacol. Exp. Ther.200(3) , 479–486 (1977).
  • Rahman SH , IbrahimK, LarvinM, KingsnorthA, McMahonMJ: Association of antioxidant enzyme gene polymorphisms and glutathione status with severe acute pancreatitis.Gastroenterology126(5) , 1312–1322 (2004).
  • Townsend DM , TewKD, TapieroH: The importance of glutathione in human disease.Biomed. Pharmacother.57(3–4) , 145–155 (2003).
  • Lee AU , FarrellGC: Mechanism of azathioprine-induced injury to hepatocytes: roles of glutathione depletion and mitochondrial injury.J. Hepatol.35(6) , 756–764 (2001).
  • Menor C , Fernandez-MorenoMD, FueyoJA et al.: Azathioprine acts upon rat hepatocyte mitochondria and stress-activated protein kinases leading to necrosis: protective role of N-acetyl-L-cysteine.J. Pharmacol. Exp. Ther.311(2) , 668–676 (2004).
  • Stocco G , MartelossiS, BarabinoA et al.: Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel disease.Inflamm. Bowel Dis.13(1) , 57–64 (2007).
  • Rahman SH , NannyC, IbrahimK et al.: Genetic polymorphisms of GSTT1, GSTM1, GSTP1, MnSOD, and catalase in nonhereditary chronic pancreatitis: evidence of xenobiotic stress and impaired antioxidant capacity.Dig. Dis. Sci.50(7) , 1376–1383 (2005).
  • Pieters R , VeermanAJ: The role of 5‘nucleotidase in therapy-resistance of childhood leukemia.Med. Hypotheses27(1) , 77–80 (1988).
  • Kerstens PJ , StolkJN, BoerboomsAM et al.: Purine enzymes in rheumatoid arthritis: possible association with response to azathioprine. A pilot study.Ann. Rheum. Dis.53(9) , 608–611 (1994).
  • Kerstens PJ , StolkJN, De Abreu RA, Lambooy LH, van de Putte LB, Boerbooms AA: Azathioprine-related bone marrow toxicity and low activities of purine enzymes in patients with rheumatoid arthritis. Arthritis Rheum.38(1) , 142–145 (1995).
  • Kerstens PJ , StolkJN, HilbrandsLB, van de Putte LB, De Abreu RA, Boerbooms AM: 5-nucleotidase and azathioprine-related bone-marrow toxicity. Lancet342(8881) , 1245–1246 (1993).
  • Baburajan B , PrescottN, HudspithB et al.: A functional study of the effect of the 14bp insertion deletion polymorphism of the HLA-G gene on response to immunomodulatory therapy in inflammatory bowel disease.Gut58(Suppl. 1) , A24 (2009).
  • Baburajan B , PrescottN, HerrlingerK et al.: HLA-G 14bp insertion-deletion polymorphism influences response to methotrexate in inflammatory bowel disease.Gut56(Suppl. 11) , A107 (2007).
  • Rizzo R , RubiniM, GovoniM et al.: HLA-G 14-bp polymorphism regulates the methotrexate response in rheumatoid arthritis.Pharmacogenet. Genomics16(9) , 615–623 (2006).
  • Szakacs G , PatersonJK, LudwigJA et al.: Targeting multidrug resistance in cancer.Nat. Rev. Drug Discov.5(3) , 219–234 (2006).
  • van der Kolk DM , de Vries EG, Müller M, Vellenga E: The role of drug efflux pumps in acute myeloid leukemia. Leuk. Lymphoma43(4) , 685–701 (2002).
  • Chen ZS , LeeK, KruhGD: Transport of cyclic nucleotides and estradiol 17-β-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine.J. Biol. Chem.276(36) , 33747–33754 (2001).
  • Wijnholds J , MolCA, van Deemter L et al.: Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Natl Acad. Sci. USA97(13) , 7476–7481 (2000).
  • Borst P , ElferinkRO: Mammalian ABC transporters in health and disease.Annu. Rev. Biochem.71 , 537–592 (2002).
  • Wielinga PR , ReidG, ChallaEE et al.: Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells.Mol. Pharmacol.62(6) , 1321–1331 (2002).
  • Szakacs G , AnnereauJP, LababidiS et al.: Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells.Cancer Cell6(2) , 129–137 (2004).
  • Krishnamurthy P , SchwabM, TakenakaK et al.: Transporter-mediated protection against thiopurine-induced hematopoietic toxicity.Cancer Res.68(13) , 4983–4989 (2008).
  • Herrlinger KR , JewellDP: Review article: interactions between genotype and response to therapy in inflammatory bowel diseases.Aliment Pharmacol. Ther.24(10) , 1403–1412 (2006).
  • Rots MG , PietersR, PetersGJ et al.: Role of folylpolyglutamate synthetase and folylpolyglutamate hydrolase in methotrexate accumulation and polyglutamylation in childhood leukemia.Blood93(5) , 1677–1683 (1999).
  • Herrlinger KR , CummingsJR, BarnardoMC, SchwabM, AhmadT, JewellDP: The pharmacogenetics of methotrexate in inflammatory bowel disease.Pharmacogenet. Genomics15(10) , 705–711 (2005).
  • Cheng Q , WuB, KagerL et al.: A substrate specific functional polymorphism of human γ-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accumulation in acute lymphoblastic leukaemia cells.Pharmacogenetics14(8) , 557–567 (2004).
  • Laverdière C , ChiassonS, CosteaI, MoghrabiA, KrajinovicM: Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia.Blood100(10) , 3832–3834 (2002).
  • Wessels JA , de Vries-Bouwstra JK, Heijmans BT et al.: Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum.54(4) , 1087–1095 (2006).
  • Baburajan B , ArenasM, PrescottN et al.: The pharmacogenetics of folate and purine metabolic pathways in methotrexate therapy of inflammatory bowel disease.Gut56(Suppl. 11) , A106 (2007).
  • Dervieux T , KremerJ, LeinDO et al.: Contribution of common polymorphisms in reduced folate carrier and γ-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis.Pharmacogenetics14(11) , 733–739 (2004).
  • Wessels JA , van der Kooij SM, le Cessie S et al.: A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum.56(6) , 1765–1775 (2007).
  • Zhang H , MasseyD, TremellingM, ParkesM: Genetics of inflammatory bowel disease: clues to pathogenesis.Br. Med. Bull.87 , 17–30 (2008).
  • Mascheretti S , HampeJ, CroucherPJ et al.: Response to infliximab treatment in Crohn‘s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials.Pharmacogenetics12(7) , 509–515 (2002).
  • Vermeire S , LouisE, RutgeertsP et al.: NOD2/CARD15 does not influence response to infliximab in Crohn‘s disease.Gastroenterology123(1) , 106–111 (2002).
  • Weiss B , LebowitzO, FidderHH et al.: Response to medical treatment in patients with Crohn‘s disease: the role of NOD2/CRAD15, disease phenotype, and age of diagnosis.Dig. Dis. Sci. (2009) (Epub ahead of print).
  • Urcelay E , MendozaJL, MartinezA et al.: IBD5 polymorphisms in inflammatory bowel disease: association with response to infliximab.World J. Gastroenterol.11(8) , 1187–1192 (2005).
  • Mascheretti S , HampeJ, KuhbacherT et al.: Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn‘s disease treated with infliximab.Pharmacogenomics J.2(2) , 127–136 (2002).
  • Pierik M , VermeireS, SteenKV et al.: Tumour necrosis factor-α receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab.Aliment. Pharmacol. Ther.20(3) , 303–310 (2004).
  • Matsukura H , IkedaS, YoshimuraN, TakazoeM, MuramatsuM: Genetic polymorphisms of tumour necrosis factor receptor superfamily 1A and 1B affect responses to infliximab in Japanese patients with Crohn‘s disease.Aliment. Pharmacol. Ther.27(9) , 765–770 (2008).
  • Dideberg V , TheatreE, FarnirF et al.: The TNF/ADAM 17 system: implication of an ADAM 17 haplotype in the clinical response to infliximab in Crohn‘s disease.Pharmacogenet. Genomics16(10) , 727–734 (2006).
  • Taylor KD , PlevySE, YangH et al.: ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn‘s disease.Gastroenterology120(6) , 1347–1355 (2001).
  • Dideberg V , LouisE, FarnirF et al.: Lymphotoxin α gene in Crohn’s disease patients: absence of implication in the response to infliximab in a large cohort study.Pharmacogenet. Genomics16(5) , 369–373 (2006).
  • Ozeki T , FuruyaY, NaganoC et al.: Analysis of linkage between lymphotoxin a haplotype and polymorphisms in 5‘-flanking region of tumor necrosis factor α gene associated with efficacy of infliximab for Crohn’s disease patients.Mutat. Res.602(1–2) , 170–174 (2006).
  • Cartron G , DacheuxL, SallesG et al.: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene.Blood99(3) , 754–758 (2002).
  • Louis E , El Ghoul Z, Vermeire S et al.: Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn‘s disease. Aliment. Pharmacol. Ther.19(5) , 511–519 (2004).
  • Louis EJ , WatierHE, SchreiberS et al.: Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn‘s disease: a subanalysis of the ACCENT I study.Pharmacogenet. Genomics16(12) , 911–914 (2006).
  • Willot S , VermeireS, OhresserM et al.: No association between C-reactive protein gene polymorphisms and decrease of C-reactive protein serum concentration after infliximab treatment in Crohn‘s disease.Pharmacogenet. Genomics16(1) , 37–42 (2006).
  • Hlavaty T , PierikM, HenckaertsL et al.: Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn‘s disease.Aliment. Pharmacol. Ther.22(7) , 613–626 (2005).
  • Hlavaty T , FerranteM, HenckaertsL, PierikM, RutgeertsP, VermeireS: Predictive model for the outcome of infliximab therapy in Crohn‘s disease based on apoptotic pharmacogenetic index and clinical predictors.Inflamm. Bowel Dis.13(4) , 372–379 (2007).
  • Magdelaine-Beuzelin C , VermeireS, GoodallM et al.: IgG1 heavy chain-coding gene polymorphism (G1m allotypes) and development of antibodies-to-infliximab.Pharmacogenet. Genomics19(5) , 383–387 (2009).
  • Arijs I , LiK, ToedterG et al.: Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis.Gut58(12) , 1612–1619 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.