520
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CYP3A4 Intron 6 C>T SNP (CYP3A4*22) Encodes Lower CYP3A4 Activity in Cancer Patients, as Measured with Probes Midazolam and Erythromycin

, , , , , , & show all
Pages 137-149 | Published online: 17 Jan 2013

References

  • Danielson PB . The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab.3(6) , 561–597 (2002).
  • Lamba JK , LinYS, SchuetzEG, ThummelKE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev.54(10) , 1271–1294 (2002).
  • Shimada T , GuengerichFP. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl Acad. Sci. USA86(2) , 462–465 (1989).
  • Westlind A , LofbergL, TindbergN, AnderssonTB, Ingelman-SundbergM. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5´-upstream regulatory region. Biochem. Biophys. Res. Commun.259(1) , 201–205 (1999).
  • Westlind-Johnsson A , MalmeboS, JohanssonA et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab. Dispos. 31(6) , 755–761 (2003).
  • Chiou WL , JeongHY, WuTC, MaC. Use of the erythromycin breath test for in vivo assessments of cytochrome P4503A activity and dosage individualization. Clin. Pharmacol. Ther.70(4) , 305–310 (2001).
  • Mathijssen RH , LoosWJ, VerweijJ. Determining the best dose for the individual patient. J. Clin. Oncol.29(33) , 4345–4346 (2011).
  • Ozdemir V , KalowW, TangBK et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 10(5) , 373–388 (2000).
  • Baker SD , van Schaik RH, Rivory LP et al. Factors affecting cytochrome P-450 3A activity in cancer patients. Clin. Cancer Res.10(24) , 8341–8350 (2004).
  • Ball SE , ScatinaJ, KaoJ et al. Population distribution and effects on drug metabolism of a genetic variant in the 5´ promoter region of CYP3A4. Clin. Pharmacol. Ther. 66(3) , 288–294 (1999).
  • Floyd MD , GervasiniG, MasicaAL et al. Genotype–phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European– and African–American men and women. Pharmacogenetics 13(10) , 595–606 (2003).
  • He P , CourtMH, GreenblattDJ, Von Moltke LL. Genotype–phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin. Pharmacol. Ther.77(5) , 373–387 (2005).
  • Kharasch ED , WalkerA, IsoherranenN et al. Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin. Pharmacol. Ther. 82(4) , 410–426 (2007).
  • Lepper ER , BakerSD, PermenterM et al. Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients. Clin. Cancer Res. 11(20) , 7398–7404 (2005).
  • Miao J , JinY, MarundeRL et al. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharmacogenomics J. 9(5) , 319–326 (2009).
  • Shih PS , HuangJD. Pharmacokinetics of midazolam and 1´-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab. Dispos.30(12) , 1491–1496 (2002).
  • Tomalik-Scharte D , DoroshyenkoO, KirchheinerJ et al. No role for the CYP3A5*3 polymorphism in intestinal and hepatic metabolism of midazolam. Eur. J. Clin. Pharmacol. 64(10) , 1033–1035 (2008).
  • Wandel C , WitteJS, HallJM, SteinCM, WoodAJ, WilkinsonGR. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5´-promoter region polymorphism. Clin. Pharmacol. Ther.68(1) , 82–91 (2000).
  • Wang D , GuoY, WrightonSA, CookeGE, SadeeW. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J.11(4) , 274–286 (2011).
  • Elens L , BeckerML, HaufroidV et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet. Genomics 21(12) , 861–866 (2011).
  • Elens L , BouamarR, HesselinkDA et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin. Chem. 57(11) , 1574–1583 (2011).
  • Elens L , BouamarR, HesselinkDA, HaufroidV, van Gelder T, van Schaik RH. The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet. Genomics22(5) , 373–380 (2012).
  • Elens L , van Schaik RH, Panin N et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors‘ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics12(10) , 1383–1396 (2011).
  • Staatz CE , GoodmanLK, TettSE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin. Pharmacokinet.49(4) , 207–221 (2010).
  • Staatz CE , GoodmanLK, TettSE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin. Pharmacokinet.49(3) , 141–175 (2010).
  • Mathijssen RH , van Schaik RH. Genotyping and phenotyping cytochrome P450: perspectives for cancer treatment. Eur. J. Cancer42(2) , 141–148 (2006).
  • Rogers JF , RocciML Jr, Haughey DB, Bertino JS Jr. An evaluation of the suitability of intravenous midazolam as an in vivo marker for hepatic cytochrome P4503A activity. Clin. Pharmacol. Ther.73(3) , 153–158 (2003).
  • Streetman DS , BertinoJS Jr, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics10(3) , 187–216 (2000).
  • Gorski JC , HallSD, JonesDR, VandenbrandenM, WrightonSA. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem. Pharmacol.47(9) , 1643–1653 (1994).
  • He P , CourtMH, GreenblattDJ, von Moltke LL. Factors influencing midazolam hydroxylation activity in human liver microsomes. Drug Metab. Dispos.34(7) , 1198–1207 (2006).
  • Patki KC , von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of CYP3A4 and CYP3A5. Drug Metab. Dispos.31(7) , 938–944 (2003).
  • Rivory LP , SlavieroKA, HoskinsJM, ClarkeSJ. The erythromycin breath test for the prediction of drug clearance. Clin. Pharmacokinet.40(3) , 151–158 (2001).
  • Rivory LP , WatkinsPB. Erythromycin breath test. Clin. Pharmacol. Ther.70(4) , 395–399 (2001).
  • Cakaloglu Y , TredgerJM, DevlinJ, WilliamsR. Importance of cytochrome P-450IIIA activity in determining dosage and blood levels of FK 506 and cyclosporine in liver transplant recipients. Hepatology20(2) , 309–316 (1994).
  • Lown KS , ThummelKE, BenedictPE et al. The erythromycin breath test predicts the clearance of midazolam. Clin. Pharmacol. Ther. 57(1) , 16–24 (1995).
  • Turgeon DK , NormolleDP, LeichtmanAB, AnnesleyTM, SmithDE, WatkinsPB. Erythromycin breath test predicts oral clearance of cyclosporine in kidney transplant recipients. Clin. Pharmacol. Ther.52(5) , 471–478 (1992).
  • Watkins PB . Noninvasive tests of CYP3A enzymes. Pharmacogenetics4(4) , 171–184 (1994).
  • Watkins PB , HamiltonTA, AnnesleyTM, EllisCN, KolarsJC, VoorheesJJ. The erythromycin breath test as a predictor of cyclosporine blood levels. Clin. Pharmacol. Ther.48(2) , 120–129 (1990).
  • Gorski JC , JonesDR, Haehner-DanielsBD, HammanMA, O‘MaraEM Jr, Hall SD. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin. Pharmacol. Ther.64(2) , 133–143 (1998).
  • Kronbach T , MathysD, UmenoM, GonzalezFJ, MeyerUA. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol. Pharmacol.36(1) , 89–96 (1989).
  • Wandel C , BockerR, BohrerH, BrowneA, RugheimerE, MartinE. Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br. J. Anaesth.73(5) , 658–661 (1994).
  • Wrighton SA , BrianWR, SariMA et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol. Pharmacol. 38(2) , 207–213 (1990).
  • Hirth J , WatkinsPB, StrawdermanM, SchottA, BrunoR, BakerLH. The effect of an individual‘s cytochrome CYP3A4 activity on docetaxel clearance. Clin. Cancer Res.6(4) , 1255–1258 (2000).
  • Rivory LP , SlavieroK, SealeJP et al. Optimizing the erythromycin breath test for use in cancer patients. Clin. Cancer Res. 6(9) , 3480–3485 (2000).
  • van der Bol JM , MathijssenRH, CreemersGJ et al. A CYP3A4 phenotype-based dosing algorithm for individualized treatment of irinotecan. Clin. Cancer Res. 16(2) , 736–742 (2010).
  • Mathijssen RH , de Jong FA, van Schaik RH et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J. Natl Cancer Inst.96(21) , 1585–1592 (2004).
  • Chaobal HN , KharaschED. Single-point sampling for assessment of constitutive, induced, and inhibited cytochrome P450 3A activity with alfentanil or midazolam. Clin. Pharmacol. Ther.78(5) , 529–539 (2005).
  • Kim JS , NafzigerAN, TsunodaSM et al. Limited sampling strategy to predict AUC of the CYP3A phenotyping probe midazolam in adults: application to various assay techniques. J. Clin. Pharmacol. 42(4) , 376–382 (2002).
  • Nguyen AN , HoffmanJT, TsunodaSM, JangIJ, MaJD. Evaluation of intravenous midazolam limited sampling models to determine area under the concentration time curve during cytochrome P450 3A baseline, inhibition and induction or activation. Int. J. Clin. Pharmacol. Ther.50(7) , 468–475 (2012).
  • Wong M , BalleineRL, CollinsM, LiddleC, ClarkeCL, GurneyH. CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin. Pharmacol. Ther.75(6) , 529–538 (2004).
  • Kurnik D , WoodAJ, WilkinsonGR. The erythromycin breath test reflects P-glycoprotein function independently of cytochrome P450 3A activity. Clin. Pharmacol. Ther.80(3) , 228–234 (2006).
  • Lan LB , DaltonJT, SchuetzEG. Mdr1 limits CYP3A metabolism in vivo. Mol. Pharmacol.58(4) , 863–869 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.