178
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Retrospective Evidence for Clinical Validity of Expanded Genetic model in Warfarin dose Optimization in a South Indian Population

, , , , , & show all
Pages 869-878 | Published online: 07 Jun 2012

References

  • Hirsh J , FusterV, AnsellJ, HalperinJL. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J. Am. Coll. Cardiol.107 , 1633–1652 (2003).
  • Van Walraven C , JenningsA, OakeN, FergussonD, ForsterAJ. Effect of study setting on anticoagulation control: a systematic review and metaregression. Chest129 , 1155–1166 (2006).
  • Budnitz DS , PollockDA, WeidenbachK, MendelsohnAB, SchroederTJ, AnnestJL. National surveillance of emergency department visits for outpatient adverse drug events. JAMA296 , 1858–1866 (2006).
  • Finkelman BS , GageBF, JohnsonJA, BrensingerCM, KimmelSE. Genetic warfarin dosing: tables versus algorithms. J. Am. Coll. Cardiol.57 , 612–618 (2011).
  • Avery PJ , JorgensenA, HambergAK, WadeliusM, PirmohamedM, KamaliF. A proposal for an individualized pharmacogenetics-based warfarin initiation dose regimen for patients commencing anticoagulation therapy. Clin. Pharmacol. Ther.90 , 701–706 (2011).
  • Biss TT , AveryPJ, BrandãoLR et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood119(3) , 868–873 (2011).
  • Xu H , JiangM, OetjensM et al. Facilitating pharmacogenetic studies using electronic health records and natural-language processing: a case study of warfarin. J. Am. Med. Inform. Assoc. 18 , 387–391 (2011).
  • Zhu Y , ShennanM, ReynoldsKK et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin. Chem. 53 , 1199–1205 (2007).
  • Wadelius M , ChenLY, LindhJD et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113 , 784–792 (2009).
  • Klein TE , AltmanRB, ErikssonN et al.; International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med.360 , 753–764 (2009).
  • Pavani A , NaushadSM, RupasreeY et al. Optimization of warfarin dose by population-specific pharmacogenomic algorithm. Pharmacogenomics J. doi:10.1038/tpj.2011.4 (2011) (Epub ahead of print).
  • Mitchell C , GregersenN, KrauseA. Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. Pharmacogenomics12 , 953–963 (2011).
  • Kimura R , MiyashitaK, KokuboY et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb. Res. 120 , 181–186 (2007).
  • McDonald MG , RiederMJ, NakanoM, HsiaCK, RettieAE. CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol. Pharmacol.75 , 1337–1346 (2009).
  • Dang MT , HambletonJ, KayserSR. The influence of ethnicity on warfarin dosage requirement. Ann. Pharmacother.39 , 1008–1012 (2005).
  • Garcia D , ReganS, CrowtherM, HughesRA, HylekEM. Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest127 , 2049–2056 (2005).
  • Namazi S , AzarpiraN, HendijaniF et al. The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran. Clin. Ther. 32 , 1050–1060 (2010).
  • Rathore SS , AgarwalSK, PandeS, MittalT, MittalB. Frequencies of VKORC1 -1639 G>A, CYP2C9*2 and CYP2C9*3 genetic variants in the Northern Indian population. Biosci. Trends4 , 333–337 (2010).
  • Ohno M , YamamotoA, OnoA et al. Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients. Eur. J. Clin. Pharmacol. 65 , 1097–1103 (2009).
  • Yuen E , GueorguievaI, WiseS, SoonD, AaronsL. Ethnic differences in the population pharmacokinetics and pharmacodynamics of warfarin. J. Pharmacokinet. Pharmacodyn.37 , 3–24 (2010).
  • Takeuchi F , McGinnisR, BourgeoisS et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5 , e1000433 (2009).
  • Loebstein R , DvoskinI, HalkinH et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 109 , 2477–2480 (2007).
  • Zhu J , ZhangW, LiY et al. ARMS test for diagnosis of CYP2C9 and VKORC1 mutation in patients with pulmonary embolism in Han Chinese. Pharmacogenomics 11 , 113–119 (2010).
  • Chan SL , SuoC, LeeSC et al. Translational aspects of genetic factors in the prediction of drug response variability: a case study of warfarin pharmacogenomics in a multi-ethnic cohort from Asia. Pharmacogenomics J. doi:10.1038/tpj.2011.7 (2011) (Epub ahead of print).
  • Shahin MH, Khalifa SI, Gong Y et al. Genetic and nongenetic factors associated with warfarin dose requirements in Egyptian patients. Pharmacogenet. Genomics21 , 130–135 (2011).
  • Kurnik D , LoebsteinR, FarfelZ, EzraD, HalkinH, OlchovskyD. Complex drug–drug–disease interactions between amiodarone, warfarin, and the thyroid gland. Medicine (Baltimore)83 , 107–113(2004).
  • Bucerius J , JoeAY, PalmedoH, ReinhardtMJ, BiersackHJ. Impact of short-term hypothyroidism on systemic anticoagulation in patients with thyroid cancer and coumarin therapy. Thyroid16 , 369–374 (2006).
  • Demirkan K , StephensMA, NewmanKP, SelfTH. Response to warfarin and other oral anticoagulants: effects of disease states. South Med J.93 , 448–454 (2000).
  • Chute JP , RyanCP, SladekG, ShakirKM. Exacerbation of warfarin-induced anticoagulation by hyperthyroidism. Endocr. Pract.3 , 77–79 (1997).
  • Van Oosterom AT , MattieH, HermensWT, VeltkampJJ. The influence of the thyroid function on the metabolic rate of prothrombin, factor VII, and factor X in the rat. Thromb. Haemost.35 , 607–619 (1976).
  • Gong IY , TironaRG, SchwarzUI et al. Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy. Blood 118 , 3163–7311 (2011).
  • Anderson JL , HorneBD, StevensSM et al.; Couma-Gen Investigators. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation116 , 2563–2570 (2007).
  • Seckeler MD , HokeTR. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin. Epidemiol.3 , 67–84 (2011).
  • Shikata E , IeiriI, IshiguroS et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 103 , 2630–2635 (2004).
  • - SchellemanH, BrensingerCM, ChenJ, FinkelmanBS, RiederMJ, KimmelSE. New genetic variant that might improve warfarin dose prediction in African Americans. Br. J. Clin. Pharmacol.70 , 393–399 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.