425
Views
2
CrossRef citations to date
0
Altmetric
Review

Functional Impact and Prevalence of Polymorphisms Involved in the Hepatic Glucuronidation of Valproic Acid

, , &
Pages 1055-1071 | Published online: 27 Jul 2012

References

  • Meunier H , CarrazG, MeunierY, EymardP, AimardM. [Pharmacodynamic properties of N-dipropylacetic acid]. Therapie18 , 435–438 (1963).
  • Kukino K , MineuraK, DeguchiT, IshiiA, TakahiraH. Studies on a new anticonvulsant drug, sodium dipropylacetate. Assay for metabolites and metabolic pathway. Yakugaku Zasshi.92(7) , 896–900 (1972).
  • Kuhara T , MatsumotoI. Metabolism of branched medium chain length fatty acid. I. Omega-oxidation of sodium dipropylacetate in rats. Biomed. Mass. Spectrom.1(4) , 291–294 (1974).
  • Matsumoto I , KuharaT, YoshinoM. Metabolism of branched medium chain length fatty acid. II. beta-oxidation of sodium dipropylacetate in rats. Biomed. Mass. Spectrom.3(5) , 235–240 (1976).
  • Kochen W , ImbeckH, JakobsC. Studies on the urinary excretion of metabolites of valproic acid (dipropylacetic acid) in rats and humans. Arzneimittelforschung27(5) , 1090–1099 (1977).
  • Schäfer H , LührsR. Metabolite pattern of valproic acid. Part I: gaschromatographic determination of the valproic acid metabolite artifacts, heptanone-3, 4- and 5-hydroxyvalproic acid lactone. Arzneimittelforschung.28(4) , 657–662 (1978).
  • Wong H , KumarS, RurakDW, KwanE, AbbottFS, RiggsKW. Ontogeny of valproic acid disposition and metabolism: a developmental study in postnatal lambs and adult sheep. Drug Metab. Dispos.28(8) , 912–919 (2000).
  • Kumar S , WongH, YeungSA, RiggsKW, AbbottFS, RurakDW. Disposition of valproic acid in maternal fetal, and newborn sheep. II: metabolism and renal elimination. Drug Metab. Dispos.28(7) , 857–864 (2000).
  • Ionescu C , CairaMR. Pathways of biotransformation – phase II reactions. In: Drug Metabolism: Current Concepts. Springer, Dodrecht, The Netherlands, 129–134 (2005).
  • Chen ZJ , WangXD, WangHS et al. Simultaneous determination of valproic acid and 2-propyl-4-pentenoic acid for the prediction of clinical adverse effects in Chinese patients with epilepsy. Seizure 21(2) , 110–117 (2012).
  • Ritter JK , ChenF, SheenYY et al. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J. Biol. Chem. 267(5) , 3257–3261 (1992).
  • Ritter JK , CrawfordJM, OwensIS. Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs with expression in COS-1 cells. J. Biol. Chem.266(2) , 1043–1047 (1991).
  • Harding D , Fournel-GigleuxS, JacksonMR, BurchellB. Cloning and substrate specificity of a human phenol UDP-glucuronosyltransferase expressed in COS-7 cells. Proc. Natl Acad. Sci. USA85(22) , 8381–8385 (1988).
  • Gong QH , ChoJW, HuangT et al. Thirteen UDP glucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11(4) , 357–368 (2001).
  • Mackenzie PI , BockKW, BurchellB et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics 15(10) , 677–685 (2005).
  • Riedy M , WangJY, MillerAP, BucklerA, HallJ, GuidaM. Genomic organization of the UGT2b gene cluster on human chromosome 4q13. Pharmacogenetics10 , 251–260 (2000).
  • Soars MG , SmithDJ, RileyRJ, BurchellB. Cloning and characterization of a canine UDP-glucuronosyltransferase. Arch. Biochem. Biophys.391(2) , 218–224 (2001).
  • Ebner T , BurchellB. Substrate specificities of two stably expressed human liver UDP-glucuronosyl transferases of the UGT1 gene family. Drug Metab. Dispos.20(1) , 50–55 (1993).
  • Jin C , MinersJO, LillywhiteKJ, MackenziePI. Complementary deoxyribonucleic acid cloning and expression of a human liver uridine diphosphate-glucuronosyltransferase glucuronidating carboxylic acid containing drugs. J. Pharm. Exp. Ther.264(1) , 475–479 (1993).
  • Sakaguchi K , GreenM, StockN, RegerTS, ZunicJ, KingC. Glucuronidation of carboxylic acid containing compounds by UDP-glucuronosyltransferase isoforms. Arch. Biochem. Biophys.424(2) , 219–225 (2004).
  • Argikar UA , RemmelRP. Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltranseferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab. Dispos.37(1) , 229–236 (2009).
  • Izukawa T , NakajimaM, FujiwaraR et al. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab. Dispos. 37(8) , 1759–1768 (2009).
  • Cheng Z , Radominska-PandyaA, TephlyTR. Studies on the substrate specificity of human intestinal UDP-lucuronosyltransferases 1A8 and 1A10. Drug Metab. Dispos.27(10) , 1165–1170 (1999).
  • Krishnaswamy S , DuanSX, von Moltke LL, Greenblatt DJ, Court MH. Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab. Dispos.31(1) , 133–139 (2003).
  • Nagar S , ZalatorisJJ, BlanchardRL. Human UGT1A6 pharmacogenetics: identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics14(8) , 487–499 (2004).
  • Xing Y , YangL, WangL et al. Systematic screening for polymorphisms within the UGT1A6 gene in three Chinese populations and function prediction through structural modeling. Pharmacogenomics 10(5) , 741–752 (2009).
  • Ciotti M , MarroneA, PotterC, OwensIS. Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: pharmacological implications. Pharmacogenetics7(6) , 485–495 (1997).
  • Peters WH , te Morsche RH, Roelofs HM. Combined polymorphisms in UDP-glucuronosyltransferases 1A1 and 1A6: implications for patients with Gilbert‘s syndrome. J. Hepatol.38(1) , 3–8 (2003).
  • Krishnaswamy S , HaoQ, Al-RohaimiA et al. UDP-glucuronosyltransferase (UGT) 1A6 pharmacogenetics: I. Identification of polymorphisms in the 5-regulatory and exon 1 regions, and association with human liver UGT1A6 gene expression and glucuronidation. J. Pharmacol. Exp. Ther. 313(3) , 1331–1339 (2005).
  • Krishnaswamy S , HaoQ, Al-RohaimiA et al. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J. Pharmacol. Exp. Ther. 313(3) , 1340–1346 (2005).
  • Sun YP , TanL, WangY, SongJH. Effect of UGT1A6 genetic polymorphisms on the metabolism of sodium valproate. Zhonghua Yi Xue Za Zhi87(29) , 2033–2035 (2007).
  • Wang Y , GaoL, LiuYP, HuangNN, XuSJ, MaDJ. Effect of UGTIA6 A541G genetic polymorphism on the metabolism of valproic acid in Han epileptic children from Henan. Zhongguo. Dang Dai. Er. Ke. Za. Zhi.12(6) , 429–432 (2010).
  • Chu XM , ZhangLF, WangGJ, ZhangSN, ZhouJH, HaoHP. Influence of UDP-glucuronosyltransferase polymorphisms on valproic acid pharmacokinetics in Chinese epilepsy patients. Eur. J. Clin. Pharmacol. doi:10.1007/s00228-012-1277-7 (2012) (Epub ahead of print).
  • Hung CC , HoJL, ChangWL et al. Association of genetic variants in six candidate genes with valproic acid therapy optimization. Pharmacogenomics 12(8) , 1107–1117 (2011).
  • Guo Y , HuC, HeX, QiuF, ZhaoL. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab. Pharmacokinet. doi:10.2133/dmpk.DMPK-11-RG-144 (2012) (Epub ahead of print).
  • Saeki M , SaitoY, JinnoH et al. Genetic polymorphisms of UGT1A6 in a Japanese population. Drug Metab. Pharmacokinet. 20(1) , 85–90 (2005).
  • Burchell B , BrierleyCH, RanceD. Specificity of human UDP-glucuronosyltransferases and xenobiotic glucuronidation. Life Sci.57(20) , 1819–1831 (1995).
  • Coffman BL , KingCD, RiosGR, TephlyTR. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab. Dispos.26(1) , 73–77 (1998).
  • Bhasker CR , McKinnonW, StoneA et al. Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10(8) , 679–685 (2000).
  • Ethell BT , AndersonGD, BurchellB. The effect of valproic acid on drug and steroid glucuronidation by expressed human UDP-glucuronosyltransferases. Biochem. Pharmacol.65(9) , 1441–1449 (2003).
  • Chung JY , ChoJY, YuKS et al. Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin. Pharmacol. Ther. 83(4) , 595–600 (2008).
  • Holthe M , RakvågTN, KlepstadP et al. Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenomics J. 3(1) , 17–26 (2003).
  • Court MH , KrishnaswamyS, HaoQ et al. Evaluation of 3´-azido-3´-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab. Dispos. 31(9) , 1125–1133 (2003).
  • Sawyer MB , InnocentiF, DasS et al. A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin. Pharmacol. Ther. 73(6) , 566–574 (2003).
  • Barbier O , TurgeonD, GirardC et al. 3´-azido-3´-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab. Dispos. 28(5) , 497–502 (2000).
  • Picard N , RatanasavanhD, PrémaudA, LeMeurY, MarquetP. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab. Dispos.33(1) , 139–146 (2005).
  • Bernard O , TojcicJ, JournaultK, PerusseL, GuillemetteC. Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab. Dispos.34(9) , 1539–1545 (2006).
  • Kagaya H , InoueK, MiuraM et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur. J. Clin. Pharmacol. 63(3) , 279–288 (2007).
  • Lévesque E , DelageR, Benoit-BiancamanoMO et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin. Pharmacol. Ther. 81(3) , 392–400 (2007).
  • Sparks R , UlrichCM, BiglerJ et al. UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients. Breast Cancer Res. 6(5) , R488–R498 (2004).
  • Swanson C , LorentzonM, VandenputL et al. Sex steroid levels and cortical bone size in young men are associated with a uridine diphosphate glucuronosyltransferase 2B7 polymorphism (H268Y). J. Clin. Endocrinol. Metab. 92(9) , 3697–3704 (2007).
  • Thibaudeau J , LépineJ, TojcicJ et al. Characterization of common UGT1A8, UGT1A9, and UGT2B7 variants with different capacities to inactivate mutagenic 4-hydroxylated metabolites of estradiol and estrone. Cancer Res. 66(1) , 125–133 (2006).
  • Blevins-Primeau AS , SunD, ChenG et al. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites. Cancer Res. 69(5) , 1892–1900 (2009).
  • Wang H , YuanL, ZengS. Characterizing the effect of UDP-glucuronosyltransferase (UGT) 2B7 and UGT1A9 genetic polymorphisms on enantioselective glucuronidation of flurbiprofen. Biochem. Pharmacol.82(11) , 1757–1763 (2011).
  • Takekuma Y , TakenakaT, KiyokawaM et al. Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol. J. Pharm. Pharm. Sci. 9(1) , 101–112 (2006).
  • Takekuma Y , TakenakaT, KiyokawaM et al. Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol. Pharm. Bull. 30(3) , 537–542 (2007).
  • Hirota T , IeiriI, TakaneH et al. Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab. Dispos. 31(5) , 677–680 (2003).
  • Honda M , ToyodaW, ShimizuT et al. UGT2B7*3 did not affect the pharmacokinetics of R- and S-carvedilol in healthy Japanese. Drug Metab. Pharmacokinet.22(5) , 382–386 (2007).
  • Saeki M , SaitoY, JinnoH et al. Single nucleotide polymorphisms and haplotype frequencies of UGT2B4 and UGT2B7 in a Japanese population. Drug Metab. Dispos. 32(9) , 1048–1054 (2004).
  • Lampe JW , BiglerJ, BushAC, PotterJD. Prevalence of polymorphisms in the human UDP-glucuronosyltransferase 2B family: UGT2B4(D458E), UGT2B7(H268Y), and UGT2B15(D85Y). Cancer Epidemiol. Biomarkers Prev.9(3) , 329–333 (2000).
  • Mehlotra RK , BockarieMJ, ZimmermanPA. Prevalence of UGT1A9 and UGT2B7 nonsynonymous single nucleotide polymorphisms in West African, Papua New Guinean, and North American populations. Eur. J. Clin. Pharmacol.63(1) , 1–8 (2007).
  • Saito K , MoriyaH, SawaguchiT et al. Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin. Biochem. 39(3) , 303–308 (2006).
  • Hwang MS , LeeSJ, JeongHE, LeeS, YooMA, ShinJG. Genetic variations in UDP-glucuronosyltransferase 2B7 gene (UGT2B7) in a Korean population. Drug Metab. Pharmacokinet.25(4) , 398–402 (2010).
  • Mojarrabi B , ButlerR, MackenziePI. cDNA cloning and characterization of the human UDP glucuronosyltransferase, UGT1A3. Biochem. Biophys. Res. Commun.225(3) , 785–790 (1996).
  • Green MD , KingCD, MojarrabiB, MackenziePI, TephlyTR. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab. Dispos.26(6) , 507–512 (1998).
  • Iwai M , MaruoY, ItoM, YamamotoK, SatoH, TakeuchiY. Six novel UDP-glucuronosyltransferase (UGT1A3) polymorphisms with varying activity. J. Hum. Genet.49(3) , 123–128 (2004).
  • Chen Y , ChenS, LiX, WangX, ZengS. Genetic variants of human UGT1A3: functional characterization and frequency distribution in a Chinese Han population. Drug Metab. Dispos.34(9) , 1462–1467 (2006).
  • Caillier B , LépineJ, TojcicJ et al. A pharmacogenomics study of the human estrogen glucuronosyltransferase UGT1A3. Pharmacogenet. Genomics 17(7) , 481–495 (2007).
  • Ieiri I , NishimuraC, MaedaK et al. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose. Pharmacogenet. Genomics 21(8) , 495–505 (2011).
  • Ehmer U , VogelA, SchütteJK, KroneB, MannsMP, StrassburgCP. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology39(4) , 970–977 (2004).
  • Wiener D , FangJL, DossettN, LazarusP. Correlation between UDP-glucuronosyltransferase genotypes and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone glucuronidation phenotype in human liver microsomes. Cancer Res.64(3) , 1190–1196 (2004).
  • Mori A , MaruoY, IwaiM, SatoH, TakeuchiY. UDP-glucuronosyltransferase 1A4 polymorphisms in a Japanese population and kinetics of clozapine glucuronidation. Drug Metab. Dispos.33(5) , 672–675 (2005).
  • Sun D , ChenG, DellingerRW, DuncanK, FangJL, LazarusP. Characterization of tamoxifen and 4-hydroxytamoxifen glucuronidation by human UGT1A4 variants. Breast Cancer Res.8(4) , R50 (2006).
  • Ghotbi R , MannheimerB, AklilluE et al. Carriers of the UGT1A4 142T>G gene variant are predisposed to reduced olanzapine exposure – an impact similar to male gender or smoking in schizophrenic patients. Eur. J. Clin. Pharmacol. 66(5) , 465–474 (2010).
  • Gulcebi MI , OzkaynakciA, GorenMZ, AkerRG, OzkaraC, OnatFY. The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy. Epilepsy Res.95(1–2) , 1–8 (2011).
  • Erickson-Ridout KK , ZhuJ, LazarusP. Olanzapine metabolism and the significance of UGT1A448V and UGT2B1067Y variants. Pharmacogenet. Genomics21(9) , 539–551 (2011).
  • Saeki M , SaitoY, JinnoH et al. Genetic variations and haplotypes of UGT1A4 in a Japanese population. Drug Metab. Pharmacokinet. 20(2) , 144–151 (2005).
  • Villeneuve L , GirardH, FortierLC, GagnéJF, GuillemetteC. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African–American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J. Pharmacol. Exp. Ther.307(1) , 117–128 (2003).
  • Bernard O , GuillemetteC. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab. Dispos.32(8) , 775–778 (2004).
  • Thibaudeau J , LépineJ, TojcicJ et al. Characterization of common UGT1A8, UGT1A9, and UGT2B7 variants with different capacities to inactivate mutagenic 4-hydroxylated metabolites of estradiol and estrone. Cancer Res. 66(1) , 125–133 (2006).
  • Wang H , YuanL, ZengS. Characterizing the effect of UDP-glucuronosyltransferase (UGT) 2B7 and UGT1A9 genetic polymorphisms on enantioselectiveglucuronidation of flurbiprofen. Biochem. Pharmacol.82(11) , 1757–1763 (2011).
  • Jinno H , SaekiM, SaitoY et al. Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J. Pharmacol. Exp. Ther. 306(2) , 688–693 (2003).
  • Takahashi H , MaruoY, MoriA, IwaiM, SatoH, TakeuchiY. Effect of D256N and Y483D on propofol glucuronidation by human uridine 5´-diphosphate glucuronosyltransferase (UGT1A9). Basic Clin. Pharmacol. Toxicol.103(2) , 131–136 (2008).
  • Korprasertthaworn P , UdomuksornW, YoovathawornK. Three novel single nucleotide polymorphisms of UGT1A9 in a Thai population. Drug Metab. Pharmacokinet.24(5) , 482–485 (2009).
  • Olson KC , DellingerRW, ZhongQ et al. Functional characterization of low-prevalence missense polymorphisms in the UDP-glucuronosyltransferase 1A9 gene. Drug Metab. Dispos. 37(10) , 1999–2007 (2009).
  • Paoluzzi L , SinghAS, PriceDK et al. Influence of genetic variants in UGT1A1 and UGT1A9 on the in vivo glucuronidation of SN-38. J. Clin. Pharmacol. 44(8) , 854–860 (2004).
  • Saeki M , SaitoY, JinnoH et al. Three novel single nucleotide polymorphisms in UGT1A9. Drug Metab. Pharmacokinet. 18(2) , 146–149 (2003).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.