342
Views
1
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of Conventional Chemotherapy in Non-Small-Cell Lung Cancer: A Changing Landscape?

, , &
Pages 1073-1086 | Published online: 27 Jul 2012

References

  • Schiller JH , HarringtonD, BelaniCP et al. Comparison of four chemotherapy regimens for advanced non-small cell lung cancer. N. Engl. J. Med. 346 , 92–98 (2002).
  • Gutierrez ME , KummarS, GiacconeG. Next generation oncology drug development: opportunities and challenges. Nat. Rev. Clin. Oncol.6 , 259–265 (2009).
  • Danesi R , PasqualettiG, GiovannettiE et al. Pharmacogenomics in non-small-cell lung cancer chemotherapy. Adv. Drug Deliv. Rev. 61(5) , 408–417 (2009).
  • Evans WE , McLeodHL. Pharmacogenomics-drug disposition, drug targets, and side effects. N. Engl. J. Med.348 , 538–549 (2003).
  • Cheok MH , EvansWE. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat. Rev. Cancer6(2) , 117–129 (2006).
  • Hildebrandt MA , GuJ, WuX. Pharmacogenomics of platinum-based chemotherapy in NSCLC. Expert Opin. Drug Metab. Toxicol.5(7) , 745–755 (2009).
  • Mathiaux J , Le Morvan V, Pulido M et al. Role of DNA repair gene polymorphisms in the efficiency of platinum-based adjuvant chemotherapy for non-small cell lung cancer. Mol. Diagn. Ther.15(3) , 159–166 (2011).
  • Ardizzoni A , BoniL, TiseoM et al. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J. Natl Cancer Inst. 99 , 847–857 (2007).
  • Scagliotti GV , ParikhP, vonPJ et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26 , 3543–3551 (2008).
  • Peters GJ , Van Moorsel CJ, Lakerveld B et al. Effects of gemcitabine on cis-platinum-DNA adduct formation and repair in a panel of gemcitabine and cisplatin-sensitive or -resistant human ovarian cancer cell lines. Int. J. Oncol.28(1) , 237–244 (2006).
  • Sancar A . DNA repair in humans. Annu. Rev. Genet.29 , 69–105 (1995).
  • Yu JJ , MuC, LeeKB et al. A nucleotide polymorphism in ERCC1 in human ovarian cancer cell lines and tumor tissues. Mutat. Res. 382 , 13–20 (1997).
  • Chen P , WienckeJ, AldapeK et al. Association of an ERCC1 polymorphism with adult-onset glioma. Cancer Epidemiol. Biomarkers Prev. 9 , 843–847 (2000).
  • Ryu JS , HongYC, HanHS et al. Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer 44 , 311–316 (2004).
  • Isla D , SarriesC, RosellR et al. Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann. Oncol. 15 , 1194–1203 (2004).
  • Wei SZ , ZhanP, ShiMQ et al. Predictive value of ERCC1 and XPD polymorphism in patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: a systematic review and meta-analysis. Med. Oncol. 28(1) , 315–321 (2011).
  • Zhou C , RenS, ZhouS et al. Predictive effects of ERCC1 and XRCC3 SNP on efficacy of platinum-based chemotherapy in advanced NSCLC patients. Jpn J. Clin. Oncol. 40 , 954–960 (2010).
  • Gao R , ReeceK, SissungT et al. The ERCC1 N118N polymorphism does not change cellular ERCC1 protein expression or platinum sensitivity. Mutat. Res. 708(1–2) , 21–27 (2011).
  • Takenaka T , YanoT, KiyoharaC et al. Effects of excision repair cross-complementation group 1 (ERCC1) single nucleotide polymorphisms on the prognosis of non-small cell lung cancer patients. Lung Cancer 67 , 101–107 (2010).
  • Siddik ZH . Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs. In: The Cancer Handbook. Alison MR (Ed.). Nature Publishing Group, London, UK, 1295–1313 (2002).
  • Gurubhagavatula S , LiuG, ParkS et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J. Clin. Oncol.22(13) , 2594–2601 (2004).
  • Yin M , YanJ, VoutsinaA et al. No evidence of an association of ERCC1 and ERCC2 polymorphisms with clinical outcomes of platinum-based chemotherapies in non-small cell lung cancer: a meta-analysis. Lung Cancer 72(3) , 370–377 (2010).
  • Wei Q , FrazierML, LevinB. DNA repair: a double-edged sword. J. Natl Cancer Inst.92 , 440–441 (2000).
  • Olaussen KA , DunantA, FouretP et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med. 355 , 983–991 (2006).
  • Niedernhofer LJ , BhagwatN, WoodRD. ERCC1 and non-small-cell lung cancer. N. Engl. J. Med.356 , 2538–2541 (2007).
  • Chen S , ZhangJ, WangR et al. The platinum-based treatments for advanced non-small cell lung cancer, is low/negative ERCC1 expression better than high/positive ERCC1 expression? A meta-analysis. Lung Cancer 70 , 63–70 (2010).
  • Seyhan EC , AltınS, CetinkayaE et al. Prognostic significance of ERCC1 expression in resected non small cell lung carcinoma. Ann. Thorac. Cardiovasc. Surg. 17(2) , 110–117 (2011).
  • Zheng Z , ChenT, LiX et al. The DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N. Engl. J. Med. 356 , 800–808 (2007).
  • Zucali PA , GiovannettiE, DestroA et al. Thymidylate synthase and excision repair cross-complementing group-1 as predictors of responsiveness in mesothelioma patients treated with pemetrexed/carboplatin. Clin. Cancer Res. 17(8) , 2581–2590 (2011).
  • Elnaggar M , GiovannettiE, PetersGJ. Molecular Targets of gemcitabine action: rationale for development of novel drugs and drug combinations. Curr. Pharm. Des.18(19) , 2811–2829 (2012).
  • Achiwa H , OguriT, SatoS et al. Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci. 95 , 753–757 (2004).
  • Giovannetti E , Del Tacca M, Mey V et al. Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res.66 , 3928–3935 (2006).
  • Farrell JJ , ElsalehH, GarciaM et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 136(1) , 187–195 (2009).
  • Oguri T , AchiwaH, MuramatsuH et al. The absence of human equilibrative nucleoside transporter 1 expression predicts nonresponse to gemcitabine-containing chemotherapy in non-small cell lung cancer. Cancer Lett. 256(1) , 112–119 (2007).
  • Li L , SchaidDJ, FridleyBL et al. Gemcitabine metabolic pathway genetic polymorphisms and response in patients with non-small cell lung cancer. Pharmacogenet. Genomics 22(2) , 105–116 (2012).
  • Danesi R , G Altavilla, Giovannetti E et al. Pharmacogenomics of gemcitabine in non-small-cell lung cancer and other solid tumors. Pharmacogenomics10(1) , 69–80 (2009).
  • van Bree C , Castro Kreder N, Loves WJ et al. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines. Int J. Radiat. Oncol. Biol. Phys.54 , 237–244 (2002).
  • Kroep JR , LovesWJ, van der Wilt CL et al. Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol. Cancer Ther.1 , 371–376 (2002).
  • Sève P , MackeyJR, IsaacS et al. cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer. Lung Cancer 49(3) , 363–370 (2005).
  • Tibaldi C , GiovannettiE, VasileE et al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin. Cancer Res. 14 , 1797–1803 (2008).
  • Tibaldi C , GiovannettiE, TiseoM et al. Correlation of cytidine deaminase polymorphisms and activity with clinical outcome in gemcitabine-/platinum-treated advanced non-small-cell lung cancer patients. Ann. Oncol. 23(3) , 670–677 (2012).
  • Soo RA , WangLZ, NgSS et al. Distribution of gemcitabine pathway genotypes in ethnic Asians and their association with outcome in non-small cell lung cancer patients. Lung Cancer 63(1) , 121–127 (2009).
  • Ludovini V , FlorianiI, PistolaL et al. Association of cytidine deaminase and xeroderma pigmentosum group D polymorphisms with response, toxicity, and survival inc isplatin/gemcitabine-treated advanced non-small cell lung cancer patients. J. Thorac. Oncol. 6(12) , 2018–2026 (2011).
  • Sugiyama E , KaniwaN, KimSR et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J. Clin. Oncol. 25(1) , 32–42 (2007).
  • Maring JG , WachtersFM, SlijferM et al. Pharmacokinetics of gemcitabine in non-small-cell lung cancer patients: impact of the 79A>C cytidine deaminase polymorphism. Eur. J. Clin. Pharmacol. 66(6) , 611–617 (2010).
  • Joerger M , BurgersJA, BaasP et al. Gene polymorphisms, pharmacokinetics, and hematological toxicity in advanced non-small-cell lung cancer patients receiving cisplatin/gemcitabine. Cancer Chemother. Pharmacol. 69(1) , 25–33 (2012).
  • Joerger M , BurgersSA, BaasP et al. Germline polymorphisms in patients with advanced non-small cell lung cancer receiving first-line platinum-gemcitabine chemotherapy: a prospective clinical study. Cancer 118(9) , 2466–3475 (2011).
  • Ciccolini J , MercierC, DahanL et al. Integrating pharmacogenetics into gemcitabine dosing-time for a change? Nat. Rev. Clin. Oncol. 8(7) , 439–444 (2011).
  • Davidson JD , MaL, FlagellaM et al. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res. 64 , 3761–3766 (2004).
  • Rosell R , FelipE, TaronM et al. Gene expression as a predictive marker of outcome in stage IIB-IIIA-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin. Cancer Res. 10(12 Pt 2) , 4215S–4219S (2004).
  • Bepler G , KusmartsevaI, SharmaS et al. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J. Clin. Oncol. 24 , 4731–4737 (2006).
  • Zheng Z , ChenT, XueliL et al. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N. Engl. J. Med. 356 , 800–808 (2007).
  • Simon GR , SchellMJ, BegumM et al. Preliminary indication of survival benefit from ERCC1 and RRM1-tailored chemotherapy in patients with advanced nonsmall cell lung cancer: evidence from an individual patient analysis. Cancer 118(9) , 2525–2531 (2011).
  • Yang LY , LiL, JiangH et al. Expression of ERCC1 antisense RNA abrogates gemicitabine-mediated cytotoxic synergism with cisplatin in human colon tumor cells defective in mismatch repair but proficient in nucleotide excision repair. Clin. Cancer Res. 6 , 773–781 (2000).
  • Peters GJ , van der Wilt CL, van Moorsel CJ et al. Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther.87(2–3) , 227–253 (2000).
  • Bepler G , ZhengZ, GautamA et al. Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer 47 , 183–192 (2005).
  • Dong S , GuoAL, ChenZH et al. RRM1 single nucleotide polymorphism -37C-->A correlates with progression-free survival in NSCLC patients after gemcitabine-based chemotherapy. J. Hematol. Oncol.3 , 10 (2010).
  • Kim SO , JeongJY, KimMR et al. Efficacy of gemcitabine in patients with non-small cell lung cancer according to promoter polymorphisms of the ribonucleotide reductase M1 gene. Clin. Cancer Res. 14 , 3083–3088 (2008).
  • Kwon WS , RhaSY, ChoiYH et al. Ribonucleotide reductase M1 (RRM1) 2464G>A polymorphism shows an association with gemcitabine chemosensitivity in cancer cell lines. Pharmacogenet. Genomics 16 , 429–438 (2006).
  • Ryu JS , ShinES, NamHS et al. Differential effect of polymorphisms of CMPK1 and RRM1 on survival in advanced non-small cell lung cancer patients treated with gemcitabine or taxane/cisplatinum. J. Thorac. Oncol. 6(8) , 1320–1329 (2011).
  • Monzo M , RosellR, SanchezJJ et al. Paclitaxel resistance in non-small-cell lung cancer associated with beta-tubulin gene mutations. J. Clin. Oncol. 17 , 1786–1793 (1999).
  • Rosell R , FelipE. Predicting response to paclitaxel/carboplatin-based therapy in non-small cell lung cancer. Semin. Oncol.28 , 37–44 (2001).
  • Monzo M , TaronM, RosellR. Genetic analysis of the beta-tubulin gene, TUBB, in non-small-cell lung cancer. J. Natl Cancer Inst.94 , 774–776 (2002).
  • Verdier-Pinard P , WangF, MartelloL et al. Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42 , 5349–5357 (2003).
  • Ranganathan S , BenetatosCA, ColarussoPJ et al. Altered beta-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. Br. J. Cancer 77 , 562–566 (1998).
  • Rosell R , ScagliottiG, DanenbergKD et al. Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene 223 , 548–553 (2003).
  • Lafarge S , SylvainV, FerraraM et al. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene 20 , 6597–6606 (2001).
  • Bhattacharyya M , EarUS, KollerBH et al. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J. Biol. Chem. 275 , 23899–23903 (2000).
  • Mullan PB , QuinnJE, GilmorePM et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene 20 , 6123–6131 (2001).
  • Quinn JE , KennedyRD, MullanPB et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res. 63 , 6221–6228 (2003).
  • Quinn JE , JamesCR, StewartGE et al. BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin. Cancer Res.13 , 7413–7420 (2007).
  • Wang L , WeiJ, QianX et al. ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel. BMC Cancer8 , 97 (2008).
  • Taron M , RosellR, FelipE et al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum. Mol. Genet.13 , 2443–2449 (2004).
  • Rosell R , Perez-RocaL, SanchezJJ et al. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression. PLoS ONE 4(5) , e5133 (2009).
  • Wang B , MatsuokaS, BallifBA et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316 , 1194–1198 (2007).
  • Chattopadhyay S , MoranRG, GoldmanID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol. Cancer Ther.6 , 404–417 (2007).
  • Giovannetti E , LemosC, TekleC et al. Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol. Pharmacol. 73 , 1290–1300 (2008).
  • Takezawa K , OkamotoI, OkamotoW et al. Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer. Br. J. Cancer 104 , 1594–1601 (2011).
  • Hanauske AR , EismannU, OberschmidtO et al. In vitro chemosensitivity of freshly explanted tumor cells to pemetrexed is correlated with target gene expression. Invest. New Drugs25 , 417–423 (2007).
  • Chen CY , ChangYL, ShihJY et al. Thymidylate synthase and dihydrofolate reductase expression in non-small cell lung carcinoma: the association with treatment efficacy of pemetrexed. Lung Cancer 74(1) , 132–138 (2011).
  • Sun JM , HanJ, AhnJS et al. Significance of thymidylate synthase and thyroid transcription factor 1 expression in patients with nonsquamous non-small cell lung cancer treated with pemetrexed-based chemotherapy. J. Thorac. Oncol. 6(8) , 1392–1399 (2011).
  • Ceppi P , VolanteM, SaviozziS et al. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 107 , 1589–1596 (2006).
  • Galvani E , PetersGJ, GiovannettiE. Thymidylate synthase inhibitors for non-small cell lung cancer. Expert Opin. Investig. Drugs20(10) , 1343–1356 (2011).
  • Zheng Z , LiX, SchellMJ, ChenT et al. Thymidylate synthase in situ protein expression and survival in stage I nonsmall-cell lung cancer. Cancer 112 , 2765–2773 (2008).
  • Edler D , KressnerU, RagnhammarP et al. Immunohistochemically detected thymidylate synthase in colorectal cancer: an independent prognostic factor of survival. Clin. Cancer Res. 6 , 488–492 (2000).
  • Novello S , ScagliottiG, TorriV et al. International tailored chemotherapy adjuvant trial: ITACA trial. J. Clin. Oncol. 29(Suppl.) , (2011) (Abstract e17514).
  • Horie N , AibaH, OguroK et al. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5´-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. 20 , 191–197 (1995).
  • Marsh S , McKayJA, CassidyJ et al. Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int. J. Oncol. 19 , 383–386 (2001).
  • Villafranca E , OkruzhnovY, DominguezMA et al. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J. Clin. Oncol. 19 , 1779–1786 (2001).
  • Jakobsen A , NielsenJN, GyldenkerneN et al. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J. Clin. Oncol. 23 , 1365–1369 (2005).
  • Schwab M , ZangerUM, MarxC et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J. Clin. Oncol. 26 , 2131–2138 (2008).
  • Mauritz R , GiovannettiE, BeumerIJ et al. Polymorphisms in the enhancer region of the thymidylate synthase gene are associated with thymidylate synthase levels in normal tissues but not in malignant tissues of patients with colorectal cancer. Clin. Colorectal Cancer 8 , 146–154 (2009).
  • Smit EF , BurgersSA, BiesmaB et al. Randomized Phase II and pharmacogenetic study of pemetrexed compared with pemetrexed plus carboplatin in pretreated patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 27 , 2038–2045 (2009).
  • Assaraf YG . Molecular basis of antifolate resistance. Cancer Metastasis Rev.26 , 153–181 (2007).
  • Stark M , WichmanC, AviviI et al. Aberrant splicing of folylpolyglutamate synthetase as a novel mechanism of antifolate resistance in leukemia. Blood 113(18) , 4362–4369 (2009).
  • Uemura T , OguriT, OzasaH et al. ABCC11/MRP8 confers pemetrexed resistance in lung cancer. Cancer Sci. 101 , 2404–2410 (2010).
  • Adjei AA , MandrekarSJ, DyGK et al. Phase II trial of pemetrexed plus bevacizumab for second-line therapy of patients with advanced non-small-cell lung cancer: NCCTG and SWOG study N0426. J. Clin. Oncol. 28 , 614–619 (2010).
  • Adjei AA , SalavaggioneOE, MandrekarSJ et al. Correlation between polymorphisms of the reduced folate carrier gene (SLC19A1) and survival after pemetrexed-based therapy in non-small cell lung cancer: a North Central Cancer Treatment Group-based exploratory study. J. Thorac. Oncol. 5 , 1346–1353 (2010).
  • Lee RC , FeinbaumRL, AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75 , 843–854 (1993).
  • Bartel DP . MicroRNA: genomics, biogenesis, mechanism, and function. Cell116 , 281–297 (2004).
  • Giovannetti E , ErozenciA, SmitJ et al. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit. Rev. Oncol. Hematol. 81(2) , 103–122 (2012).
  • Bloewer PE , VerducciJS, LinS et al. MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol. Cancer Ther. 6(5) , 1483–1591 (2007).
  • Galluzzi L , MorselliE, VitaleI et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res. 70(5) , 1793–1803 (2010).
  • Bian HB , PanX, YangJS et al. Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). J. Exp. Clin. Cancer Res. 30 , 20 (2011).
  • Voortman J , GotoA, MendiboureJ et al. Micro RNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res. 70(21) , 8288–8298 (2010).
  • Yanaihara N , CaplenN, BowmanE et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9 , 189–198 (2006).
  • Raponi M , DosseyL, JatkoeT et al. MicroRNA classifiers for predicting prognisis of squamous cell lung cancer. Cancer Res. 69 , 5776–5783 (2009).
  • He L , HeX, LimLP et al. A microRNA component of the p53 tumor suppressor network. Nature 447 , 1130–1134 (2007).
  • Brock MV , HookerCM, Ota-MachidaE et al. DNA methylation markers and early recurrence in stage I NSCLC. N. Engl. J. Med. 358 , 1118–1128 (2008).
  • Markou A , TsarouchaEG, KaklamanisL et al. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin. Chem. 54 , 1696–1704 (2008).
  • Gao W , LuX, LiuL et al. MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol. Ther. 13(5) , 330–340 (2012).
  • Catuogno S , CerchiaL, RomanoG et al. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene doi:10.1038/onc.2012.51 (2012) (Epub ahead of print).
  • Hodzic J , GiovannettiE, CalvoBD et al. Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells. Nucleosides Nucleotides Nucleic Acids. 30(12) , 1214–1222 (2011).
  • Wu X , YeY, RosellR et al. Genome-wide association of survival in non-small cell lung cancer patients receiving platinum-based chemotherapy. J. Natl Cancer Inst. 103(10) , 817–825 (2011).
  • Metzker ML . Sequencing technologies – the next generation. Nat. Rev. Genetics11 , 31–46 (2010).
  • Marusyk A , PolyakK. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta1805(1) , 105–17 (2010).
  • Navin N , KendallJ, TrogeJ et al. Tumor evolution inferred by single-cell sequencing. Nature 472 , 90–94 (2011).
  • Gerlinger M , RowanAJ, HorswellS et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366 , 883–892 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.