557
Views
2
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetic Markers of Toxicity for Chemotherapy in Colorectal Cancer Patients

&
Pages 1173-1191 | Published online: 21 Aug 2012

References

  • Tsunoda A , NakaoK, WatanabeM, MatsuiN, OoyamaA, KusanoM. Associations of various gene polymorphisms with toxicity in colorectal cancer patients receiving oral uracil and tegafur plus leucovorin: a prospective study. Ann. Oncol.22(2) , 355–361 (2011).
  • Gonzalez-Haba E , GarciaMI, CortejosoL et al. ABCB1 gene polymorphisms are associated with adverse reactions in fluoropyrimidine-treated colorectal cancer patients. Pharmacogenomics11(12) , 1715–1723 (2010).
  • Boige V , MendiboureJ, PignonJP et al. Pharmacogenetic assessment of toxicity and outcome in patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. J. Clin. Oncol. 28(15) , 2556–2564 (2010).
  • McLeod HL , SargentDJ, MarshS et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J. Clin. Oncol. 28(20) , 3227–3233 (2010).
  • Braun MS , RichmanSD, ThompsonL et al. Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer: the FOCUS trial. J. Clin. Oncol. 27(33) , 5519–5528 (2009).
  • Fernandez-Rozadilla C , CazierJB, MorenoV et al. Pharmacogenomics in colorectal cancer: a genome-wide association study to predict toxicity after 5-fluorouracil or FOLFOX administration. Pharmacogenomics J. doi: 10.1038/tpj.2012.2 (2012) (Epub ahead of print).
  • Jemal A , BrayF, CenterMM, FerlayJ, WardE, FormanD. Global cancer statistics. CA Cancer J. Clin.61(2) , 69–90 (2011).
  • Kelly H , GoldbergRM. Systemic therapy for metastatic colorectal cancer: current options, current evidence. J. Clin. Oncol.23(20) , 4553–4560 (2005).
  • Raymond E , FaivreS, WoynarowskiJM, ChaneySG. Oxaliplatin: mechanism of action and antineoplastic activity. Semin. Oncol.25(2 Suppl. 5) , 4–12 (1998).
  • Iyer L , RatainMJ. Clinical pharmacology of camptothecins. Cancer Chemother. Pharmacol.42(Suppl. 43) , S31–S43 (1998).
  • Chua W , KhoPS, MooreMM, CharlesKA, ClarkeSJ. Clinical, laboratory and molecular factors predicting chemotherapy efficacy and toxicity in colorectal cancer. Crit. Rev. Oncol. Hematol.79(3) , 224–250 (2011).
  • Rougier P , Van Cutsem E, Bajetta E et al. Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet352(9138) , 1407–1412 (1998).
  • Saltz LB , CoxJV, BlankeC et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med. 343(13) , 905–914 (2000).
  • Fuchs CS , MooreMR, HarkerG, VillaL, RinaldiD, HechtJR. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J. Clin. Oncol.21(5) , 807–814 (2003).
  • Pfeiffer P , MortensenJP, BjerregaardB et al. Patient preference for oral or intravenous chemotherapy: a randomised cross-over trial comparing capecitabine and Nordic fluorouracil/leucovorin in patients with colorectal cancer. Eur. J. Cancer 42(16) , 2738–2743 (2006).
  • de Gramont A , BossetJF, MilanC et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J. Clin. Oncol. 15(2) , 808–815 (1997).
  • Glimelius B , SorbyeH, BalteskardL et al. A randomized Phase III multicenter trial comparing irinotecan in combination with the Nordic bolus 5-FU and folinic acid schedule or the bolus/infused de Gramont schedule (Lv5FU2) in patients with metastatic colorectal cancer. Ann. Oncol. 19(5) , 909–914 (2008).
  • El-Khoueiry AB , LenzHJ. Should continuous infusion 5-fluorouracil become the standard of care in the USA as it is in Europe? Cancer Invest.24(1) , 50–55 (2006).
  • Kadoyama K , MikiI, TamuraT, BrownJ, SakaedaT, OkunoY. Adverse event profiles of 5-fluorouracil and capecitabine: data mining of the public version of the FDA adverse event reporting system, AERS, and reproducibility of clinical observations. Int. J. Med. Sci.9(1) , 33–39 (2012).
  • Diasio RB , HarrisBE. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet.16(4) , 215–237 (1989).
  • Ciccolini J , MercierC, EvrardA et al. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy. Ther. Drug Monit. 28(5) , 678–685 (2006).
  • Van Kuilenburg AB , VrekenP, AbelingNG et al. Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency. Hum. Genet. 104(1) , 1–9 (1999).
  • Gross E , UllrichT, SeckK et al. Detailed analysis of five mutations in dihydropyrimidine dehydrogenase detected in cancer patients with 5-fluorouracil-related side effects. Hum. Mutat. 22(6) , 498 (2003).
  • Amstutz U , FroehlichTK, LargiaderCR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics12(9) , 1321–1336 (2011).
  • McDonagh EM , Whirl-CarrilloM, GartenY, AltmanRB, KleinTE. From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med.5(6) , 795–806 (2011).
  • Boisdron-Celle M , RemaudG, TraoreS et al. 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett. 249(2) , 271–282 (2007).
  • Ezzeldin H , JohnsonMR, OkamotoY, DiasioR. Denaturing high performance liquid chromatography analysis of the DPYD gene in patients with lethal 5-fluorouracil toxicity. Clin. Cancer Res.9(8) , 3021–3028 (2003).
  • Deenen MJ , TolJ, BuryloAM et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin. Cancer Res. 17(10) , 3455–3468 (2011).
  • Kleibl Z , FidlerovaJ, KleiblovaP et al. Influence of dihydropyrimidine dehydrogenase gene (DPYD) coding sequence variants on the development of fluoropyrimidine-related toxicity in patients with high-grade toxicity and patients with excellent tolerance of fluoropyrimidine-based chemotherapy. Neoplasma 56(4) , 303–316 (2009).
  • Swen JJ , NijenhuisM, de Boer A et al. Pharmacogenetics: from bench to byte – an update of guidelines. Clin. Pharmacol. Ther.89(5) , 662–673 (2011).
  • Aschele C , DebernardisD, CasazzaS et al. Immunohistochemical quantitation of thymidylate synthase expression in colorectal cancer metastases predicts for clinical outcome to fluorouracil-based chemotherapy. J. Clin. Oncol. 17(6) , 1760–1770 (1999).
  • Afzal S , GusellaM, JensenSA et al. The association of polymorphisms in 5-fluorouracil metabolism genes with outcome in adjuvant treatment of colorectal cancer. Pharmacogenomics 12(9) , 1257–1267 (2011).
  • Etienne-Grimaldi MC , MilanoG, Maindrault-GoebelF et al. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and FOLFOX response in colorectal cancer patients. Br. J. Clin. Pharmacol. 69(1) , 58–66 (2010).
  • Ruzzo A , GrazianoF, LoupakisF et al. Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFOX-4 chemotherapy. J. Clin. Oncol. 25(10) , 1247–1254 (2007).
  • Thomas F , Motsinger-ReifAA, HoskinsJM et al. Methylenetetrahydrofolate reductase genetic polymorphisms and toxicity to 5-FU-based chemoradiation in rectal cancer. Br. J. Cancer 105(11) , 1654–1662 (2011).
  • Goekkurt E , Al-BatranSE, HartmannJT et al. Pharmacogenetic analyses of a Phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin: a study of the arbeitsgemeinschaft internistische onkologie. J. Clin. Oncol. 27(17) , 2863–2873 (2009).
  • Kristensen MH , PedersenPL, MelsenGV, EllehaugeJ, MejerJ. Variants in the dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidylate synthase genes predict early toxicity of 5-fluorouracil in colorectal cancer patients. J. Int. Med. Res.38(3) , 870–883 (2010).
  • Afzal S , GusellaM, VainerB et al. Combinations of polymorphisms in genes involved in the 5-fluorouracil metabolism pathway are associated with gastrointestinal toxicity in chemotherapy-treated colorectal cancer patients. Clin. Cancer Res. 17(11) , 3822–3829 (2011).
  • van der Put NM , GabreelsF, StevensEM et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am. J. Hum. Genet. 62(5) , 1044–1051 (1998).
  • Capitain O , Boisdron-CelleM, PoirierAL, Abadie-LacourtoisieS, MorelA, GamelinE. The influence of fluorouracil outcome parameters on tolerance and efficacy in patients with advanced colorectal cancer. Pharmacogenomics J.8(4) , 256–267 (2008).
  • Sharma R , HoskinsJM, RivoryLP et al. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms and toxicity to capecitabine in advanced colorectal cancer patients. Clin. Cancer Res. 14(3) , 817–825 (2008).
  • Gusella M , FrigoAC, BolzonellaC et al. Predictors of survival and toxicity in patients on adjuvant therapy with 5-fluorouracil for colorectal cancer. Br. J. Cancer 100(10) , 1549–1557 (2009).
  • Chua W , GoldsteinD, LeeCK et al. Molecular markers of response and toxicity to FOLFOX chemotherapy in metastatic colorectal cancer. Br. J. Cancer 101(6) , 998–1004 (2009).
  • Glimelius B , GarmoH, BerglundA et al. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenomics J. 11(1) , 61–71 (2011).
  • Taflin H , WettergrenY, OdinE, CarlssonG, DerwingerK. Gene polymorphisms MTHFRC677T and MTRA2756G as predictive factors in adjuvant chemotherapy for stage III colorectal cancer. Anticancer Res.31(9) , 3057–3062 (2011).
  • Tibaldi C , GiovannettiE, VasileE et al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin. Cancer Res. 14(6) , 1797–1803 (2008).
  • Ueno H , KaniwaN, OkusakaT et al. Homozygous CDA*3 is a major cause of life-threatening toxicities in gemcitabine-treated Japanese cancer patients. Br. J. Cancer 100(6) , 870–873 (2009).
  • Caronia D , MartinM, SastreJ et al. A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand–foot syndrome. Clin. Cancer Res. 17(7) , 2006–2013 (2011).
  • Kaida Y , InuiN, SudaT, NakamuraH, WatanabeH, ChidaK. The CYP2A6*4 allele is determinant of S-1 pharmacokinetics in Japanese patients with non-small-cell lung cancer. Clin. Pharmacol. Ther.83(4) , 589–594 (2008).
  • Hirose T , FujitaK, NishimuraK et al. Pharmacokinetics of S-1 and CYP2A6 genotype in Japanese patients with advanced cancer. Oncol. Rep. 24(2) , 529–536 (2010).
  • Kim KP , JangG, HongYS et al. Phase II study of S-1 combined with oxaliplatin as therapy for patients with metastatic biliary tract cancer: influence of the CYP2A6 polymorphism on pharmacokinetics and clinical activity. Br. J. Cancer 104(4) , 605–612 (2011).
  • Hayes JD , PulfordDJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol.30(6) , 445–600 (1995).
  • Ali-Osman F , AkandeO, AntounG, MaoJX, BuolamwiniJ. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J. Biol. Chem.272(15) , 10004–10012 (1997).
  • Chen YC , TzengCH, ChenPM et al. Influence of GSTP1 I105V polymorphism on cumulative neuropathy and outcome of FOLFOX-4 treatment in Asian patients with colorectal carcinoma. Cancer Sci. 101(2) , 530–535 (2010).
  • Pare L , MarcuelloE, AltesA et al. Pharmacogenetic prediction of clinical outcome in advanced colorectal cancer patients receiving oxaliplatin/5-fluorouracil as first-line chemotherapy. Br. J. Cancer 99(7) , 1050–1055 (2008).
  • Kweekel DM , KoopmanM, AntoniniNF et al. GSTP1 Ile105Val polymorphism correlates with progression-free survival in MCRC patients treated with or without irinotecan: a study of the Dutch Colorectal Cancer Group. Br. J. Cancer99(8) , 1316–1321 (2008).
  • Kweekel DM , GelderblomH, AntoniniNF et al. Glutathione-S-transferase pi (GSTP1) codon 105 polymorphism is not associated with oxaliplatin efficacy or toxicity in advanced colorectal cancer patients. Eur. J. Cancer 45(4) , 572–578 (2009).
  • Lecomte T , LandiB, BeauneP, Laurent-PuigP, LoriotMA. Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin. Cancer Res.12(10) , 3050–3056 (2006).
  • Inada M , SatoM, MoritaS et al. Associations between oxaliplatin-induced peripheral neuropathy and polymorphisms of the ERCC1 and GSTP1 genes. Int. J. Clin. Pharmacol. Ther. 48(11) , 729–734 (2010).
  • Agostini M , PasettoLM, PucciarelliS et al. Glutathione S-transferase P1 Ile105Val polymorphism is associated with haematological toxicity in elderly rectal cancer patients receiving preoperative chemoradiotherapy. Drugs Aging 25(6) , 531–539 (2008).
  • Chang PM , TzengCH, ChenPM et al. ERCC1 codon 118 C-->T polymorphism associated with ERCC1 expression and outcome of FOLFOX-4 treatment in Asian patients with metastatic colorectal carcinoma. Cancer Sci.100(2) , 278–283 (2009).
  • Lai JI , TzengCH, ChenPM et al. Very low prevalence of XPD K751Q polymorphism and its association with XPD expression and outcomes of FOLFOX-4 treatment in Asian patients with colorectal carcinoma. Cancer Sci. 100(7) , 1261–1266 (2009).
  • Duell EJ , WienckeJK, ChengTJ et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 21(5) , 965–971 (2000).
  • Wang Z , XuB, LinD et al. XRCC1 polymorphisms and severe toxicity in lung cancer patients treated with cisplatin-based chemotherapy in Chinese population. Lung Cancer62(1) , 99–104 (2008).
  • Iyer L , KingCD, WhitingtonPF et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J. Clin. Invest. 101(4) , 847–854 (1998).
  • Ciotti M , BasuN, BrangiM, OwensIS. Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem. Biophys. Res. Commun.260(1) , 199–202 (1999).
  • Gagne JF , MontminyV, BelangerP, JournaultK, GaucherG, GuillemetteC. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol. Pharmacol.62(3) , 608–617 (2002).
  • Hanioka N , OzawaS, JinnoH, AndoM, SaitoY, SawadaJ. Human liver UDP-glucuronosyltransferase isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin. Xenobiotica31(10) , 687–699 (2001).
  • Iyer L , DasS, JanischL et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J.2(1) , 43–47 (2002).
  • Marcuello E , AltesA, MenoyoA, Del Rio E, Gomez-Pardo M, Baiget M. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br. J. Cancer91(4) , 678–682 (2004).
  • Martinez-Balibrea E , AbadA, Martinez-CardusA et al. UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. Br. J. Cancer103(4) , 581–589 (2010).
  • Massacesi C , TerrazzinoS, MarcucciF et al. Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer 106(5) , 1007–1016 (2006).
  • Rouits E , CharassonV, PetainA et al. Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br. J. Cancer 99(8) , 1239–1245 (2008).
  • Innocenti F , UndeviaSD, IyerL et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. 22(8) , 1382–1388 (2004).
  • Biason P , MasierS, ToffoliG. UGT1A1*28 and other UGT1A polymorphisms as determinants of irinotecan toxicity. J. Chemother.20(2) , 158–165 (2008).
  • Cecchin E , InnocentiF, D‘AndreaM et al. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J. Clin. Oncol. 27(15) , 2457–2465 (2009).
  • Cote JF , KirzinS, KramarA et al. UGT1A1 polymorphism can predict hematologic toxicity in patients treated with irinotecan. Clin. Cancer Res.13(11) , 3269–3275 (2007).
  • Kweekel DM , GelderblomH, Van der Straaten T, Antonini NF, Punt CJ, Guchelaar HJ. UGT1A1*28 genotype and irinotecan dosage in patients with metastatic colorectal cancer: a Dutch Colorectal Cancer Group study. Br. J. Cancer99(2) , 275–282 (2008).
  • Liu CY , ChenPM, ChiouTJ et al. UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer112(9) , 1932–1940 (2008).
  • Shulman K , CohenI, Barnett-GrinessO et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer 117(14) , 3156–3162 (2011).
  • Toffoli G , CecchinE, CoronaG et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J. Clin. Oncol. 24(19) , 3061–3068 (2006).
  • Hoskins JM , GoldbergRM, QuP, IbrahimJG, McLeodHL. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J. Natl Cancer Inst.99(17) , 1290–1295 (2007).
  • Schulz C , HeinemannV, SchalhornA et al. UGT1A1 gene polymorphism: impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer. World J. Gastroenterol.15(40) , 5058–5066 (2009).
  • Marcuello E , PaezD, PareL et al. A genotype-directed Phase I–IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br. J. Cancer 105(1) , 53–57 (2011).
  • Innocenti F , KroetzDL, SchuetzE et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol. 27(16) , 2604–2614 (2009).
  • Ferraldeschi R , MinchellLJ, RobertsSA et al. UGT1A1*28 genotype predicts gastrointestinal toxicity in patients treated with intermediate-dose irinotecan. Pharmacogenomics10(5) , 733–739 (2009).
  • Okuyama Y , HazamaS, NozawaH et al. Prospective Phase II study of FOLFIRI for mCRC in Japan, including the analysis of UGT1A1 28/6 polymorphisms. Jpn J. Clin. Oncol. 41(4) , 477–482 (2011).
  • Jada SR , LimR, WongCI et al. Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci. 98(9) , 1461–1467 (2007).
  • Carlini LE , MeropolNJ, BeverJ et al. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin. Cancer Res.11(3) , 1226–1236 (2005).
  • Fujita K , AndoY, NagashimaF et al. Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6 is associated with reduced activity for SN-38 in Japanese patients with cancer. Cancer Chemother. Pharmacol. 60(4) , 515–522 (2007).
  • Han JY , LimHS, ShinES et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J. Clin. Oncol. 24(15) , 2237–2244 (2006).
  • Rhodes KE , ZhangW, YangD et al. ABCB1, SLCO1B1 and UGT1A1 gene polymorphisms are associated with toxicity in metastatic colorectal cancer patients treated with first-line irinotecan. Drug Metab. Lett.1(1) , 23–30 (2007).
  • Sai K , SaitoY, Fukushima-UesakaH et al. Impact of CYP3A4 haplotypes on irinotecan pharmacokinetics in Japanese cancer patients. Cancer Chemother. Pharmacol. 62(3) , 529–537 (2008).
  • van der Bol JM , MathijssenRH, CreemersGJ et al. A CYP3A4 phenotype-based dosing algorithm for individualized treatment of irinotecan. Clin. Cancer Res. 16(2) , 736–742 (2010).
  • Hoskins JM , MarcuelloE, AltesA et al. Irinotecan pharmacogenetics: influence of pharmacodynamic genes. Clin. Cancer Res. 14(6) , 1788–1796 (2008).
  • Baas JM , KrensLL, GuchelaarHJ et al. Recommendations on management of EGFR inhibitor-induced skin toxicity: a systematic review. Cancer Treat. Rev. 38(5) , 505–514 (2012).
  • Dahan L , NorguetE, Etienne-GrimaldiMC et al. Pharmacogenetic profiling and cetuximab outcome in patients with advanced colorectal cancer. BMC Cancer 11 , 496 (2011).
  • Graziano F , RuzzoA, LoupakisF et al. Pharmacogenetic profiling for cetuximab plus irinotecan therapy in patients with refractory advanced colorectal cancer. J. Clin. Oncol. 26(9) , 1427–1434 (2008).
  • Kiyotani K , UnoS, MushirodaT et al. A genome-wide association study identifies four genetic markers for hematological toxicities in cancer patients receiving gemcitabine therapy. Pharmacogenet. Genomics 22(4) , 229–235 (2012).
  • Won HH , LeeJ, ParkJO et al. Polymorphic markers associated with severe oxaliplatin-induced, chronic peripheral neuropathy in colon cancer patients. Cancer 118(11) , 2828–2836 (2012).
  • Caussanel JP , LéviF, BrienzaS et al. Phase I trial of 5-day continuous venous infusion of oxaliplatin at circadian rhythm-modulated rate compared with constant rate. J. Natl Cancer Inst. 82(12) , 1046–1050 (1990).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.