765
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of Olanzapine Metabolism

&
Pages 1319-1336 | Published online: 09 Aug 2013

References

  • Lieberman JA , StroupTS, McEvoyJP et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 353 , 1209–1223 (2005).
  • Lewis S , BarnesT, MurrayR et al. First generation versus second generation (non-clozapine) antipsychotic drugs versus clozapine in schizophrenia: the CUtLASS trials. Neuropsychopharmacology 30 , S31–S32 (2005).
  • Kahn RS , FleischhackerWW, BoterH et al. Effectiveness of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: an open randomised clinical trial. Lancet 371 , 1085–1097 (2008).
  • Leucht S , CorvesC, ArbterD, EngelRR, LiC, DavisJM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet373 , 31–41 (2009).
  • De Hert M , DetrauxJ, van Winkel R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat. Rev. Endocrinol.8 , 114–126 (2012).
  • Kapur S , ZipurskyRB, RemingtonG et al. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am. J. Psychiatry 155 , 921–928 (1998).
  • Nordstrom AL , FardeL, WieselFA et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol. Psychiatry 33 , 227–235 (1993).
  • Hiemke C , BaumannP, BergemannN et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44 , 195–235 (2011).
  • Kinon BJ , VolavkaJ, StaufferV et al. Standard and higher dose of olanzapine in patients with schizophrenia or schizoaffective disorder: a randomized, double-blind, fixed-dose study. J. Clin. Psychopharmacol. 28 , 392–400 (2008).
  • Skogh E , ReisM, DahlML, LundmarkJ, BengtssonF. Therapeutic drug monitoring data on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther. Drug Monit.24 , 518–526 (2002).
  • Bigos KL , BiesRR, PollockBG, LowyJJ, ZhangF, WeinbergerDR. Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Mol. Psychiatry16 , 620–625 (2011).
  • Callaghan JT , BergstromRF, PtakLR, BeasleyCM. Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin. Pharmacokinet.37 , 177–193 (1999).
  • Bigos KL , PollockBG, ColeyKC et al. Sex, race, and smoking impact olanzapine exposure. J. Clin. Pharmacol. 48 , 157–165 (2008).
  • Gex-Fabry M , Balant-GorgiaAE, BalantLP. Therapeutic drug monitoring of olanzapine: the combined effect of age, gender, smoking, and comedication. Ther. Drug Monit.25 , 46–53 (2003).
  • Patel MX , BowskillS, CouchmanL et al. Plasma olanzapine in relation to prescribed dose and other factors: data from a therapeutic drug monitoring service, 1999–2009. J. Clin. Psychopharmacol. 31 , 411–417 (2011).
  • Weigmann H , GerekS, ZeisigA, MüllerM, HärtterS, HiemkeC. Fluvoxamine but not sertraline inhibits the metabolism of olanzapine: evidence from a therapeutic drug monitoring service. Ther. Drug Monit.23 , 410–413 (2001).
  • Olesen OV , LinnetK. Olanzapine serum concentrations in psychiatric patients given standard doses: the influence of comedication. Ther. Drug Monit.21 , 87–90 (1999).
  • Moons T , de Roo M, Claes S, Dom G. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics12 , 1193–1211 (2011).
  • Kassahun K , MattiuzE, NyhartE Jr et al. Disposition and biotransformation of the antipsychotic agent olanzapine in humans. Drug Metab. Dispos.25 , 81–93 (1997).
  • Green MD , TephlyTR. Glucuronidation of amine substrates by purified and expressed UDP-glucuronosyltransferase proteins. Drug Metab. Dispos.26 , 860–867 (1998).
  • Kassahun K , MattiuzE, FranklinR, GillespieT. Olanzapine 10-N-glucuronide. Drug Metab. Dispos.26 , 848–855 (1998).
  • Mattiuz E , FranklinR, GillespieT et al. Disposition and metabolism of olanzapine in mice, dogs, and rhesus monkeys. Drug Metab. Dispos. 25 , 573–583 (1997).
  • Ring BJ , CatlowJ, LindsayTJ et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J. Pharmacol. Exp. Ther. 276 , 658–666 (1996).
  • Calligaro DO , FairhurstJ, HottenTM, MooreNA, TupperDE. The synthesis and biological activity of some known and putative metabolites of the atypical antipsychotic agent olanzapine (LY170053). Bioorg. Med. Chem. Lett.7 , 25–30 (1997).
  • Hägg S , SpigsetO, LaksoHA, DahlqvistR. Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur. J. Clin. Pharmacol.57 , 493–497 (2001).
  • Cabaleiro T , Lopez-RodriguezR, OchoaD, RomanM, NovalbosJ, Abad-SantosF. Polymorphisms influencing olanzapine metabolism and adverse effects in healthy subjects. Hum. Psychopharmacol.28 , 205–214 (2013).
  • Carrillo JA , HerraizAG, RamosSI, GervasiniG, VizcainoS, BenitezJ. Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J. Clin. Psychopharmacol.23 , 119–127 (2003).
  • Nozawa M , OhnumaT, MatsubaraY et al. The relationship between the response of clinical symptoms and plasma olanzapine concentration, based on pharmacogenetics: Juntendo University Schizophrenia Projects (JUSP). Ther. Drug Monit. 30 , 35–40 (2008).
  • Skogh E , SjodinI, JosefssonM, DahlML. High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. J. Clin. Psychopharmacol.31 , 4–9 (2011).
  • Schweikl H , TaylorJA, KitareewanS, LinkoP, NagorneyD, GoldsteinJA. Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics3 , 239–249 (1993).
  • Fuhr U , RostKL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics4 , 109–116 (1994).
  • Kalow W , TangBK. The use of caffeine for enzyme assays: a critical appraisal. Clin. Pharmacol. Ther.53 , 503–514 (1993).
  • Shirley KL , HonYY, PenzakSR, LamYWF, SpratlinV, JannMW. Correlation of cytochrome P450 (CYP) 1A2 activity using caffeine phenotyping and olanzapine disposition in healthy volunteers. Neuropsychopharmacology28 , 961–966 (2003).
  • Sachse C , BrochmollerJ, BauerS, RootsI. Functional significance of a C -> A polymorphism in intron I of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol.47 , 445–449 (1999).
  • Ghotbi R , ChristensenM, RohHK, Ingelman-SundbergM, AklilluE, BertilssonL. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype–phenotype relationship in Swedes and Koreans. Eur. J. Clin. Pharmacol.63 , 537–546 (2007).
  • Laika B , LeuchtS, HeresS, SchneiderH, SteimerW. Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J.10 , 20–29 (2010).
  • Ghotbi R , MannheimerB, AklilluE et al. Carriers of the UGT1A4 142T>G gene variant are predisposed to reduced olanzapine exposure – an impact similar to male gender or smoking in schizophrenic patients. Eur. J. Clin. Pharmacol. 66 , 465–474 (2010).
  • Söderberg MM , HaslemoT, MoldenE, DahlML. Influence of CYP1A1/CYP1A2 and AHR polymorphisms on systemic olanzapine exposure. Pharmacogenet. Genomics23 , 279–285 (2013).
  • Cornelis MC , MondaKL, YuK et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet. 7 , e1002033 (2011).
  • Sulem P , GudbjartssonDF, GellerF et al. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption. Hum. Mol. Genet. 20 , 2071–2077 (2011).
  • Amin N , ByrneE, JohnsonJ et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol. Psychiatry 17 , 1116–1129 (2012).
  • Nebert DW , DaltonTP, OkeyAB, GonzalezFJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J. Biol. Chem.279 , 23847–23850 (2004).
  • Linnet K . Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomes. Hum. Psychopharmacol.17 , 233–238 (2002).
  • Erickson-Ridout KK , ZhuJ, LazarusP. Olanzapine metabolism and the significance of UGT1A448V and UGT2B1067Y variants. Pharmacogenet. Genomics21 , 539–551 (2011).
  • Kaivosaari S , ToivonenP, HesseLM, KoskinenM, CourtMH, FinelM. Nicotine glucuronidation and the human UDP-glucuronosyltransferase UGT2B10. Mol. Pharmacol.72 , 761–768 (2007).
  • Mori A , MaruoY, IwaiM, SatoH, TakeuchiY. UDP-glucuronosyltransferase 1A4 polymorphisms in a Japanese population and kinetics of clozapine glucuronidation. Drug Metab. Dispos.33 , 672–675 (2005).
  • Ehmer U , VogelA, SchutteJK, KroneB, MannsMP, StrassburgCP. Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology39 , 970–977 (2004).
  • Benoit-Biancamano MO , AdamJP, BernardO et al. A pharmacogenetics study of the human glucuronosyltransferase UGT1A4. Pharmacogenet. Genomics 19 , 945–954 (2009).
  • Erichsen TJ , EhmerU, KalthoffS et al. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene. Toxicol. Appl. Pharmacol. 230 , 252–260 (2008).
  • Mao M , SkoghE, ScordoMG, DahlM. Interindividual variation in olanzapine concentration influenced by UGT1A4 L48V polymorphism in serum and upstream FMO polymorphisms in cerebrospinal fluid. J. Clin. Psychopharmacol.32 , 287–289 (2012).
  • Haslemo T , LoryanI, UedaN et al. UGT1A4*3 encodes significantly increased glucuronidation of olanzapine in patients on maintenance treatment and in recombinant systems. Clin. Pharmacol. Ther.92 , 221–227 (2012).
  • Chen G , DellingerRW, GallagherCJ, SunD, LazarusP. Identification of a prevalent functional missense polymorphism in the UGT2B10 gene and its association with UGT2B10 inactivation against tobacco-specific nitrosamines. Pharmacogenet. Genomics18 , 181–191 (2008).
  • Lomri N , GuQ, CashmanJR. Molecular cloning of the flavin-containing monooxygenase (form II) cDNA from adult human liver. Proc. Natl Acad. Sci. USA89 , 1685–1689 (1992).
  • Hernandez D , JanmohamedA, ChandanP, PhillipsIR, ShephardEA. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: Identification of novel gene and pseudogene clusters. Pharmacogenetics14 , 117–130 (2004).
  • Phillips IR , DolphinCT, ClairP et al. The molecular biology of the flavin-containing monooxygenases of man. Chem. Biol. Interact. 96 , 17–32 (1995).
  • Dolphin CT , CullingfordTE, ShephardEA, SmithRL, PhillipsIR. Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FMO4. Eur. J. Biochem.235 , 683–689 (1996).
  • Phillips IR , ShephardEA. Flavin-containing monooxygenases: mutations, disease and drug response. Trends Pharmacol. Sci.29 , 294–301 (2008).
  • Zschocke J , KohlmuellerD, QuakE, MeissnerT, HoffmannGF, MayatepekE. Mild trimethylaminuria caused by common variants in FMO3 gene. Lancet354 , 834–835 (1999).
  • Kang JH , ChungWG, LeeKH et al. Phenotypes of flavin-containing monooxygenase activity determined by ranitidine N-oxidation are positively correlated with genotypes of linked FMO3 gene mutations in a Korean population. Pharmacogenetics 10 , 67–78 (2000).
  • Hisamuddin IM , WehbiMA, SchmotzerB et al. Genetic polymorphisms of flavin monooxygenase 3 in sulindac-induced regression of colorectal adenomas in familial adenomatous polyposis. Cancer Epidemiol. Biomarkers Prev. 14 , 2366–2369 (2005).
  • Cashman JR , ZhangJ, NelsonMR, BraunA. Analysis of flavin-containing monooxygenase 3 genotype data in populations administered the anti-schizophrenia agent olanzapine. Drug Metab. Lett.2 , 100–114 (2008).
  • Söderberg MM , HaslemoT, MoldenE, DahlML. Influence of FMO1 and 3 polymorphisms on serum olanzapine and its N-oxide metabolite in psychiatric patients. Pharmacogenomics J. doi: 10.1038/tpj.2012.47. (2012) (Epub ahead of print).
  • Koukouritaki SB , PochMT, CabacunganET, McCarverDG, HinesRN. Discovery of novel flavin-containing monooxygenase 3 (FMO3) single nucleotide polymorphisms and functional analysis of upstream haplotype variants. Mol. Pharmacol.68 , 383–392 (2005).
  • Hernandez D , JanmohamedA, ChandanP, OmarBA, PhillipsIR, ShephardEA. Deletion of the mouse Fmo1 gene results in enhanced pharmacological behavioural responses to imipramine. Pharmacogenet. Genomics19 , 289–299 (2009).
  • Damani LA , PoolWF, CrooksPA, KaderlikRK, ZieglerDM. Stereoselectivity in the N´-oxidation of nicotine isomers by flavin-containing monooxygenase. Mol. Pharmacol.33 , 702–705 (1988).
  • Krueger SK , WilliamsDE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther.106 , 357–387 (2005).
  • Yeung CK , LangDH, ThummelKE, RettieAE. Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab. Dispos.28 , 1107–1111 (2000).
  • Hines RN , LuoZ, HoppKA, CabacunganET, KoukouritakiSB, McCarverDG. Genetic variability at the human FMO1 locus: significance of a basal promoter yin yang 1 element polymorphism (FMO1*6). J. Pharmacol. Exp. Ther.306 , 1210–1218 (2003).
  • Hinrichs AL , MurphySE, WangJC et al. Common polymorphisms in FMO1 are associated with nicotine dependence. Pharmacogenet. Genomics 21 , 397–402 (2011).
  • Westlind A , MalmeboS, JohanssonI et al. Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem. Biophys. Res. Commun. 281 , 1349–1355 (2001).
  • Gellner K , EiseltR, HustertE et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 11 , 111–121 (2001).
  • Agarwal V , KommaddiRP, ValliK et al. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS One 3 , e2337 (2008).
  • Corchero J , PimpraleS, KimuraS, GonzalezFJ. Organization of the CYP1A cluster on human chromosome 15: implications for gene regulation. Pharmacogenetics11 , 1–6 (2001).
  • Ueda R , IketakiH, NagataK et al. A common regulatory region functions bidirectionally in transcriptional activation of the human CYP1A1 and CYP1A2 genes. Mol. Pharmacol. 69 , 1924–1930 (2006).
  • 1000 Genomes Project Consortium, Abecasis GR, Auton A. An integrated map of genetic variation from 1,092 human genomes. Nature491 , 56–65 (2012).
  • Gong QH , ChoJW, HuangT et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11 , 357–368 (2001).
  • International HapMap 3 Consortium, Altshuler DM, Gibbs RA et al. Integrating common and rare genetic variation in diverse human populations. Nature467 , 52–58 (2010).
  • Park CS , KangJH, ChungWG et al. Ethnic differences in allelic frequency of two flavin-containing monooxygenase 3 (FMO3) polymorphisms: linkage and effects on in vivo and in vitro FMO activities. Pharmacogenetics 12 , 77–80 (2002).
  • Allerston CK , ShimizuM, FujiedaM, ShephardEA, YamazakiH, PhillipsIR. Molecular evolution and balancing selection in the flavin-containing monooxygenase 3 gene (FMO3). Pharmacogenet. Genomics17 , 827–839 (2007).
  • Mao M , MatimbaA, ScordoMG et al. Flavin-containing monooxygenase 3 polymorphisms in 13 ethnic populations from Europe, East Asia and sub-Saharan Africa: frequency and linkage analysis. Pharmacogenomics 10 , 1447–1455 (2009).
  • Phillips IR , FrancoisAA, ShephardEA. The Flavin-containing monoooxygenases (FMOs): genetic variation and its consequences for the metabolism of therapeutic drugs. Curr. Pharmacogenomics5 , 292–313 (2007).
  • Furnes B , SchlenkD. Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol. Sci.78 , 196–203 (2004).
  • Bickel MH . The pharmacology and biochemistry of N-oxides. Pharmacol. Rev.21 , 325–355 (1969).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.