131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Long-Term Effects of ABCB1 and SXR SNPs on the Systemic Exposure to Cyclosporine in Pediatric Kidney Transplant Patients

, , , , , , & show all
Pages 1605-1613 | Received 03 May 2013, Accepted 25 Jul 2013, Published online: 02 Oct 2013

References

  • Meier-Kriesche HU , LiS, GruessnerRW et al. Immunosuppression: evolution in practice and trends, 1994–2004. Am. J. Transplant. 6(5 Pt 2) , 1111–1131 (2006).
  • Marks SD . How have the past 5 years of research changed clinical practice in paediatric nephrology?. Arch. Dis. Child.92(4) , 357–361 (2007).
  • Kovarik JM , MuellerEA, RichardF et al. Evidence for earlier stabilization of cyclosporine pharmacokinetics in de novo renal transplant patients receiving a microemulsion formulation. Transplantation 62(6) , 759–763 (1996).
  • Keown P , LandsbergD, HalloranP et al. A randomized, prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients. Report of the Canadian Neoral Renal Transplantation Study Group. Transplantation 62(12) , 1744–1752 (1996).
  • Barone G , BunkeCM, ChocMG et al. Safety and tolerability of Neoral vs Sandimmune: 1-year data in primary renal allograft recipients. Neoral Study Group. Transplant. Proc. 28(4) , 2183–2186 (1996).
  • del Mar Fernández De Gatta M , Santos-BuelgaD, Domínguez-GilA, GarcíaMJ. Immunosuppressive therapy for paediatric transplant patients: pharmacokinetic considerations. Clin. Pharmacokinet.41(2) , 115–135 (2002).
  • Matas AJ , GillinghamKJ, ChaversBM et al. The importance of early cyclosporine levels in pediatric kidney transplantation. Clin. Transplant. 10(6 Pt 1) , 482–486 (1996).
  • Zhang Y , BenetLZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin. Pharmacokinet.40(3) , 159–168 (2001).
  • Dai Y , IwanagaK, LinYS et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol.68(9) , 1889–1902 (2004).
  • Saeki T , UedaK, TanigawaraY, HoriR, KomanoT. Human P-glycoprotein transports cyclosporin A and FK506. J. Biol. Chem.268(9) , 6077–6080 (1993).
  • Hesselink DA , Van Schaik RH, Van Der Heiden IP et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther.74(3) , 245–254 (2003).
  • Anglicheau D , ThervetE, EtienneI et al. CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation. Clin. Pharmacol. Ther.75(5) , 422–433 (2004).
  • Thervet E , AnglicheauD, LegendreC, BeauneP. Role of pharmacogenetics of immunosuppressive drugs in organ transplantation. Ther. Drug Monit.30(2) , 143–150 (2008).
  • Eng HS , MohamedZ, CalneR et al. The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients. Kidney Int. 69(10) , 1858–1864 (2006).
  • Hesselink DA , van Gelder T, van Schaik RH. The pharmacogenetics of calcineurin inhibitors: one step closer toward individualized immunosuppression?. Pharmacogenomics6(4) , 323–337 (2005).
  • Liu Y , JiW, YinY et al. The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions. Clin. Chim. Acta 403(1–2) , 142–144 (2009).
  • Zhou C , VermaS, BlumbergB. The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl. Recept. Signal7 , e001 (2009).
  • Gosden RG , FeinbergAP. Genetics and epigenetics – nature‘s pen-and-pencil set. N. Engl. J. Med.356(7) , 731–733 (2007).
  • Wong AH , GottesmanII, PetronisA. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet.14(Spec. No. 1) , R11–R18 (2005).
  • Stevens JC , HinesRN, GuC et al. Developmental expression of the major human hepatic CYP3A enzymes. J. Pharmacol. Exp. Ther. 307(2) , 573–582 (2003).
  • Miki Y , SuzukiT, TazawaC, BlumbergB, SasanoH. Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol. Cell. Endocrinol.231(1–2) , 75–85 (2005).
  • Turolo S , TirelliAS, FerraressoM et al. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol. Rep. 62(6) , 1159–1169 (2010).
  • Zeger SL , LiangKY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics42(1) , 121–130 (1986).
  • Kearns GL , Abdel-RahmanSM, AlanderSW, BloweyDL, LeederJS, KauffmanRE. Developmental pharmacology – drug disposition, action, and therapy in infants and children. N. Engl. J. Med.349(12) , 1157–1167 (2003).
  • Michaud J , DubéP, NaudJ et al. Effects of serum from patients with chronic renal failure on rat hepatic cytochrome P450. Br. J. Pharmacol. 144(8) , 1067–1077 (2005).
  • Sun H , HuangY, FrassettoL, BenetLZ. Effects of uremic toxins on hepatic uptake and metabolism of erythromycin. Drug Metab. Dispos.32(11) , 1239–1246 (2004).
  • Nolin TD , AppiahK, KendrickSA, LeP, McmonagleE, HimmelfarbJ. Hemodialysis acutely improves hepatic CYP3A4 metabolic activity. J. Am. Soc. Nephrol.17(9) , 2363–2367 (2006).
  • Naud J , MichaudJ, LeblondFA, LefrancoisS, BonnardeauxA, PichetteV. Effects of chronic renal failure on liver drug transporters. Drug Metab. Dispos.36(1) , 124–128 (2008).
  • Fanta S , JönssonS, BackmanJT, KarlssonMO, HoppuK. Developmental pharmacokinetics of ciclosporin – a population pharmacokinetic study in paediatric renal transplant candidates. Br. J. Clin. Pharmacol.64(6) , 772–784 (2007).
  • Ushijima K , UemuraO, YamadaT. Age effect on whole blood cyclosporine concentrations following oral administration in children with nephrotic syndrome. Eur. J. Pediatr.171(4) , 663–668 (2012).
  • Sakaeda T , IijimaK, NozuK et al. Prediction of systemic exposure to cyclosporine in Japanese pediatric patients. J. Hum. Genet. 51(11) , 969–976 (2006).
  • Whitington PF , EmondJC, WhitingtonSH, BroelschCE, BakerAL. Small-bowel length and the dose of cyclosporine in children after liver transplantation. N. Engl. J. Med.322(11) , 733–738 (1990).
  • Dunn S . Neoral use in the pediatric transplant recipient. Transplant. Proc.32(Suppl. 3A) , S20–S26 (2000).
  • Cooney GF , HabuckyK, HoppuK. Cyclosporin pharmacokinetics in paediatric transplant recipients. Clin. Pharmacokinet.32(6) , 481–495 (1997).
  • Takahashi H , IshikawaS, NomotoS et al. Developmental changes in pharmacokinetics and pharmacodynamics of warfarin enantiomers in Japanese children. Clin. Pharmacol. Ther. 68(5) , 541–555 (2000).
  • de Wildt SN , KearnsGL, SieSD, HopWC, van den Anker JN. Pharmacodynamics of intravenous and oral midazolam in preterm infants. Clin. Drug Investig.23(1) , 27–38 (2003).
  • Marshall J , RodarteA, BlumerJ, KhooKC, AkbariB, KearnsG. Pediatric pharmacodynamics of midazolam oral syrup. Pediatric Pharmacology Research Unit Network. J. Clin. Pharmacol.40(6) , 578–589 (2000).
  • Noda T , TodaniT, WatanabeY, YamamotoS. Liver volume in children measured by computed tomography. Pediatr. Radiol.27(3) , 250–252 (1997).
  • Johnson TN , TuckerGT, TannerMS, Rostami-HodjeganA. Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl.11(12) , 1481–1493 (2005).
  • Björkman S . Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br. J. Clin. Pharmacol.59(6) , 691–704 (2005).
  • Fanta S , NiemiM, JönssonS et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet. Genomics 18(2) , 77–90 (2008).
  • Crettol S , VenetzJP, FontanaM et al. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients. Pharmacogenet. Genomics 18(4) , 307–315 (2008).
  • Fanta S , JönssonS, KarlssonMO et al. Long-term changes in cyclosporine pharmacokinetics after renal transplantation in children: evidence for saturable presystemic metabolism and effect of NR1I2 polymorphism. J. Clin. Pharmacol. 50(5) , 581–597 (2010).
  • Ferraresso M , TuroloS, BelinghieriM et al. The potential of steroids and xenobiotic receptor polymorphisms in forecasting cyclosporine pharmacokinetic variability in young kidney transplant recipients. Pediatr. Transplant. 16(6) , 658–663 (2012).
  • Bai S , LiuJ, LuSK, BrunnerLJ. In vivo induction of hepatic P-glycoprotein by cyclosporine in the rat. Res. Commun. Mol. Pathol. Pharmacol.109(1–2) , 103–114 (2001).
  • Hauser IA , KoziolekM, HopferU, ThévenodF. Therapeutic concentrations of cyclosporine A, but not FK506, increase P-glycoprotein expression in endothelial and renal tubule cells. Kidney Int.54(4) , 1139–1149 (1998).
  • Jetté L , BeaulieuE, LeclercJM, BéliveauR. Cyclosporin A treatment induces overexpression of P-glycoprotein in the kidney and other tissues. Am. J. Physiol.270(5 Pt 2) , F756–F765 (1996).
  • Gallagher WM , TweatsD, KoenigJ. Omic profiling for drug safety assessment: current trends and public–private partnerships. Drug Discov. Today14(7–8) , 337–342 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.