575
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Pharmacogenetics of Antiplatelets and Anticoagulants: A Report on Clopidogrel, Warfarin and Dabigatran

&
Pages 1565-1572 | Published online: 02 Oct 2013

References

  • Ahmad T , VooraD, BeckerRC. The pharmacogenetics of antiplatelet agents: towards personalized therapy? Nat. Rev. Cardiol.8 , 560–571 (2011).
  • Wells QS , DelaneyJT, RodenDM. Genetic determinants of response to cardiovascular drugs. Curr. Opin. Cardiol.27 , 253–261 (2012).
  • Verschuren JJ , JukemaJW. Pharmacogenetics of antiplatelet therapy: ready for clinical application? Heart97 , 1268–1276 (2011).
  • Yusuf S , ZhaoF, MehtaSR et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345(7) , 494–502 (2001).
  • Sibbing D , GebhardD, KochW et al. Isolated and interactive impact of common CYP2C19 genetic variants on the antiplatelet effect of chronic clopidogrel therapy. J. Thromb. Haemost. 8(8) , 1685–1693 (2010).
  • Frere C , CuissetT, GaboritB, AlessiMC, HulotJS. The CYP2C19*17 allele is associated with better platelet response to clopidogrel in patients admitted for non-ST acute coronary syndrome. J. Thromb. Haemost.7 , 1409–1411 (2009).
  • Paré G , MehtaSR, YusufS et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 363(18) , 1704–1714 (2010).
  • Sibbing D , KochW, GebhardD et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121(4) , 512–518 (2010).
  • Wallentin L , JamesS, StoreyRF et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 376(9749) , 1320–1328 (2010).
  • Shuldiner AR , O‘ConnellJR, BlidenKP et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302(8) , 849–857 (2009).
  • Tantry US , BlidenKP, WeiC et al. First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: the ONSET/OFFSET and RESPOND genotype studies. Circ. Cardiovasc. Genet. 3(6) , 556–566 (2010).
  • Bhatt DL , ParéG, EikelboomJW et al. The relationship between CYP2C19 polymorphisms and ischaemic and bleeding outcomes in stable outpatients: the CHARISMA genetics study. Eur. Heart J. 33(17) , 2143–2150 (2012).
  • Mega JL , SimonT, ColletJP et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304(16) , 1821–1830 (2010).
  • Mega JL , CloseSL, WiviottSD et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360 , 354–362 (2009).
  • Mega JL , CloseSL, WiviottSD et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 119(19) , 2553–2560 (2009).
  • Grosdidier C , QuiliciJ, LoosveldM et al. Effect of CYP2C19*2 and *17 genetic variants on platelet response to clopidogrel and prasugrel maintenance dose and relation to bleeding complications. Am. J. Cardiol. 111(7) , 985–990 (2013).
  • Cuisset T , LoosveldM, MorangePE et al. CYP2C19*2 and *17 alleles have a significant impact on platelet response and bleeding risk in patients treated with prasugrel after acute coronary syndrome. JACC Cardiovasc. Interv.5(12) , 1280–1287 (2012).
  • Holmes MV , PerelP, ShahT, HingoraniAD, CasasJP. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA306 , 2704–2714 (2011).
  • Roberts JD , WellsGA, Le May MR et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet379(9827) , 1705–1711 (2012).
  • Price MJ , BergerPB, TeirsteinPS et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 305(11) , 1097–1105 (2011).
  • Zabalza M , SubiranaI, SalaJ et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart 98(2) , 100–108 (2012).
  • Suh JW , KooBK, ZhangSY et al. Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ 174(12) , 1715–1722 (2006).
  • Gladding P , WebsterM, ZengI et al. The pharmacogenetics and pharmacodynamics of clopidogrel response: an analysis from the PRINC (Plavix Response in Coronary Intervention) trial. JACC Cardiovasc. Interv. 1(6) , 620–627 (2008).
  • Simon T , VerstuyftC, Mary-KrauseM et al. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 360 , 363–375 (2009).
  • Brandt J , CloseJL, IturriaSJ et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J. Thromb. Haemost. 5(12) , 2429–2436 (2007).
  • Gros P , Ben Neriah YB, Croop JM, Housman DE. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature323 , 728–731 (1986).
  • Taubert D , von Beckerath N, Grimberg G et al. Impact of P-glycoprotein on clopidogrel absorption. Clin. Pharmacol. Ther.80(5) , 486–501 (2006).
  • Mega JL , CloseSL, WiviottSD et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 376(9749) , 1312–1319 (2010).
  • Fontana P , DupontA, GandrilleS et al. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108(8) , 989–995 (2003).
  • Cuisset T , FrereC, QuiliciJ et al. Role of the T744C polymorphism of the P2Y12 gene on platelet response to a 600-mg loading dose of clopidogrel in 597 patients with non-ST-segment elevation acute coronary syndrome. Thromb. Res. 120(6) , 893–899 (2007).
  • Giusti B , GoriAM, MarcucciR et al. Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10 + 12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet. Genomics 17(12) , 1057–1064 (2007).
  • Wittkowsky AK . Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin. Vasc. Med.3 , 221–230 (2003).
  • Hirsh J , FusterV, AnsellJ, HalperinJL. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J. Am. Coll. Cardiol.41 , 1633–1652 (2003).
  • D‘Andrea G , D‘AmbrosioRL, Di Perna P et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood105(2) , 645–649 (2005).
  • Rieder MJ , ReinerAP, GageBF et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352(22) , 2285–2293 (2005).
  • Wadelius M , ChenLY, DownesK et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J. 5(4) , 262–270 (2005).
  • Takeuchi F , McGinnisR, BourgeoisS et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5 , e1000433 (2009).
  • Caldwell MD , AwadT, JohnsonJA et al. CYP4F2 genetic variant alters required warfarin dose. Blood111(8) , 4106–4112 (2008).
  • McDonald MG , RiederMJ, NakanoM, HsiaCK, RettieAE. CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol. Pharmacol.75 , 1337–1346 (2009).
  • Avery PJ , JorgensenA, HambergAK et al. A proposal for an individualized pharmacogenetics-based warfarin initiation dose regimen for patients commencing anticoagulation therapy. Clin. Pharmacol. Ther. 90(5) , 701–706 (2011).
  • Linder MW , Bon Homme M, Reynolds KK et al. Interactive modeling for ongoing utility of pharmacogenetic diagnostic testing: application for warfarin therapy. Clin. Chem.55(10) , 1861–1868 (2009).
  • Higashi MK , VeenstraDL, DondoLM et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287 , 1690–1698 (2002).
  • Aithal GP , DayCP, KestevenPJ, DalyAK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet353 , 717–719 (1999).
  • Limdi NA , McGwinG, GoldsteinJA et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African–American and European–American patients on warfarin. Clin. Pharmacol. Ther. 83(2) , 312–321 (2008).
  • Johnson JA , GongL, Whirl-CarrilloM et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 90 , 625–629 (2011).
  • Watzka M , GeisenC, BevansCG et al. Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. J. Thromb. Haemost. 9(1) , 109–118 (2011).
  • Manolopoulos VG , RagiaG, TavridouA. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics11 , 493–496 (2010).
  • Eriksson N , WadeliusM. Prediction of warfarin dose: why, when and how? Pharmacogenomics13 , 429–440 (2012).
  • International Warfarin Pharmacogenetics Consortium; Klein TE, Altman RB, Eriksson N et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med.360 , 753–764 (2009).
  • van Schie RM , WadeliusMI, KamaliF et al. Genotype-guided dosing of coumarin derivatives: the European Pharmacogenetics of Anticoagulant Therapy (EU-PACT) trial design. Pharmacogenomics 10(10) , 1687–1695 (2009).
  • Lenzini P , WadeliusM, KimmelS et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin. Pharmacol. Ther. 87(5) , 572–578 (2010).
  • Connolly SJ , EzekowitzMD, YusufS et al.; RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med.361 , 1139–1151 (2009).
  • Ezekowitz MD , ConnollyS, ParekhA et al. Rationale and design of RE-LY: randomized evaluation of long-term anticoagulant therapy, warfarin, compared with dabigatran. Am. Heart J. 157(5) , 805–810 (2009).
  • Stangier J , RathgenK, StahleH, GansserD, RothW. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br. J. Clin. Pharmacol.64 , 292–303 (2007).
  • Liesenfeld KH , LehrT, DansirikulC et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J. Thromb. Haemost. 9(11) , 2168–2175 (2011).
  • Paré G , ErikssonN, LehrT et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 127(13) , 1404–1412 (2013).
  • Wadkins RM , MortonCL, WeeksJK et al. Structural constraints affect the metabolism of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) by carboxylesterases. Mol. Pharmacol. 60(2) , 355–362 (2001).
  • Miller DS , BauerB, HartzAM. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol. Rev.60 , 196–209 (2008).
  • Zhou S , LimLY, ChowbayB. Herbal modulation of P-glycoprotein. Drug Metab. Rev.36 , 57–104 (2004).
  • Stangier J , ClemensA. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor. Clin. Appl. Thromb. Hemost.15(Suppl. 1) , S9–S16 (2009).
  • Eikelboom JW , WallentinL, ConnollySJ et al. Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the Randomized Evaluation of Long-Term Anticoagulant Therapy (RE-LY) trial. Circulation 123 , 2363–2372 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.