347
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Association of ATP-Binding Cassette Transporter Variants With the Risk of Alzheimer‘s Disease

, , , , , , , , , & show all
Pages 485-494 | Published online: 05 Apr 2013

References

  • Hardy J , SelkoeDJ. The amyloid hypothesis of Alzheimer‘s disease: progress and problems on the road to therapeutics. Science297(5580) , 353–356 (2002).
  • Bell RD , ZlokovicBV. Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer‘s disease. Acta Neuropathol.118(1) , 103–113 (2009).
  • Cirrito JR , DeaneR, FaganAM et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J. Clin. Invest. 115(11) , 3285–3290 (2005).
  • Kuhnke D , JedlitschkyG, GrubeM et al. MDR1–P-glycoprotein (ABCB1) mediates transport of Alzheimer‘s amyloid-β peptides – implications for the mechanisms of Aβ clearance at the blood–brain barrier. Brain Pathol. 17(4) , 347–353 (2007).
  • Lam FC , LiuR, LuP et al.β-amyloid efflux mediated by P-glycoprotein. J. Neurochem.76(4) , 1121–1128 (2001).
  • Vogelgesang S , CascorbiI, SchroederE et al. Deposition of Alzheimer‘s β-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12(7) , 535–541 (2002).
  • Tai LM , LoughlinAJ, MaleDK, RomeroIA. P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-β. J. Cereb. Blood Flow Metab.29(6) , 1079–1083 (2009).
  • Xiong H , CallaghanD, JonesA et al. ABCG2 is upregulated in Alzheimer‘s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood–brain barrier for Aβ (1–40) peptides. J. Neurosci. 29(17) , 5463–5475 (2009).
  • Fromm MF . Importance of P-glycoprotein at blood–tissue barriers. Trends Pharmacol. Sci.25(8) , 423–429 (2004).
  • Nicolazzo JA , Katneni K. Drug transport across the blood–brain barrier and the impact of breast cancer resistance protein (ABCG2). Curr. Top. Med. Chem.9(2) , 130–147 (2009).
  • Rao VV , DahlheimerJL, BardgettME et al. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood–cerebrospinal-fluid drug-permeability barrier. Proc. Natl Acad. Sci. USA 96(7) , 3900–3905 (1999).
  • Cascorbi I . ABC transporters in drug-refractory epilepsy: limited clinical significance of pharmacogenetics? Clin. Pharmacol. Ther.87(1) , 15–18 (2010).
  • Kim WS , GuilleminGJ, GlarosEN, LimCK, GarnerB. Quantitation of ATP-binding cassette subfamily-A transporter gene expression in primary human brain cells. Neuroreport17(9) , 891–896 (2006).
  • Chan SL , KimWS, KwokJB et al. ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro. J. Neurochem. 106(2) , 793–804 (2008).
  • Jehle AW , GardaiSJ, LiS et al. ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J. Cell Biol. 174(4) , 547–556 (2006).
  • Hollingworth P , HaroldD, SimsR et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer‘s disease. Nat. Genet. 43(5) , 429–435 (2011).
  • Ufer M , MosyaginI, MuhleH et al. Non-response to antiepileptic pharmacotherapy is associated with the ABCC2 -24C>T polymorphism in young and adult patients with epilepsy. Pharmacogenet. Genomics 19(5) , 353–362 (2009).
  • Vogelgesang S , WarzokRW, CascorbiI et al. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer‘s disease. Curr. Alzheimer Res. 1(2) , 121–125 (2004).
  • Hartz AM , MillerDS, BauerB. Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer’s disease. Mol. Pharmacol.77(5) , 715–723 (2010).
  • Brenn A , GrubeM, PetersM et al.β-Amyloid downregulates MDR1-P-glycoprotein (Abcb1) expression at the blood–brain barrier in mice. Int. J. Alzheimers Dis.2011 , 690121 (2011).
  • Ishikawa T , HiranoH, OnishiY, SakuraiA, TaruiS. Functional evaluation of ABCB1 (P-glycoprotein) polymorphisms: high-speed screening and structure-activity relationship analyses. Drug Metab. Pharmacokinet.19(1) , 1–14 (2004).
  • Schaefer M , RootsI, GerloffT. In vitro transport characteristics discriminate wild type MDR1 (ABCB1) from Ala893Ser and Ala893Thr polymorphisms. Eur. J. Clin. Pharmacol.61(9) , 718–718 (2005).
  • Strittmatter WJ , SaundersAM, SchmechelD et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90(5) , 1977–1981 (1993).
  • Elali A , HermannDM. Apolipoprotein E controls ATP-binding cassette transporters in the ischemic brain. Sci. Signal.3(142), (2010).
  • Hoffmeyer S , BurkO, von Richter O et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl Acad. Sci. USA97(7) , 3473–3478 (2000).
  • Kimchi-Sarfaty C , OhJM, KimIW et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811) , 525–528 (2007).
  • Seedhouse CH , GrundyM, WhiteP et al. Sequential influences of leukemia-specific and genetic factors on P-glycoprotein expression in blasts from 817 patients entered into the National Cancer Research Network acute myeloid leukemia 14 and 15 trials. Clin. Cancer Res. 13(23) , 7059–7066 (2007).
  • Haenisch S , CascorbiI. miRNAs as mediators of drug resistance. Epigenomics4(4) , 369–381 (2012).
  • Mosyagin I , RungeU, SchroederHW et al. Association of ABCB1 genetic variants 3435C>T and 2677G>T to ABCB1 mRNA and protein expression in brain tissue from refractory epilepsy patients. Epilepsia 49(9) , 1555–1561 (2008).
  • Frankfort SV , DoodemanVD, BakkerR et al. ABCB1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients. Mol. Neurodegener.1 , 13 (2006).
  • Kohen R , ShoferJB, KorvatskaO et al. ABCB1 genotype and CSF β-amyloid in Alzheimer disease. J. Geriatr. Psychiatry Neurol.24(2) , 63–66 (2011).
  • Innocenti F , KroetzDL, SchuetzE et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol. 27(16) , 2604–2614 (2009).
  • Laechelt S , TurriniE, RuehmkorfA, SiegmundW, CascorbiI, HaenischS. Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function. Pharmacogenomics J.11(1) , 25–34 (2011).
  • Grover S , Gourie-DeviM, BalaK, SharmaS, KukretiR. Genetic association analysis of transporters identifies ABCC2 loci for seizure control in women with epilepsy on first-line antiepileptic drugs. Pharmacogenet. Genomics22(6) , 447–465 (2012).
  • Qu J , ZhouBT, YinJY et al. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci. Ther.18(8) , 647–651 (2012).
  • Ufer M , von Stulpnagel C, Muhle H et al. Impact of ABCC2 genotype on antiepileptic drug response in Caucasian patients with childhood epilepsy. Pharmacogenet. Genomics (2011).
  • Han JY , LimHS, YooYK et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 110(1) , 138–147 (2007).
  • Erdilyi DJ , KamoryE, CsokayB et al. Synergistic interaction of ABCB1 and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J. 8(5) , 321–327 (2008).
  • Koldamova T , LefterovIM, StaufenbielM et al. The liver X receptor ligand T0901317 decreases amyloid β production in vitro and in a mouse model of Alzheimer‘s disease. J. Biol. Chem. 280(6) , 4079–4088 (2005).
  • Wahrle SE , JiangH, ParsadanianM et al. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J. Clin. Invest. 118(2) , 671–682 (2008).
  • Rodriguez-Rodriguez E , MateoI, InfanteJ et al. Interaction between HMGCR and ABCA1 cholesterol-related genes modulates Alzheimer‘s disease risk. Brain Res. 1280 , 166–171 (2009).
  • Katzov H , ChalmersK, PalmgrenJ et al. Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to β-amyloid metabolism. Hum. Mutat. 23(4) , 358–367 (2004).
  • Kolsch H , LutjohannD, JessenF et al. Polymorphism in ABCA1 influences CSF 24S-hydroxycholesterol levels but is not a major risk factor of Alzheimer‘s disease. Int. J. Mol. Med. 17(5) , 791–794 (2006).
  • Li Y , TaceyK, DoilL et al. Association of ABCA1 with late-onset Alzheimer‘s disease is not observed in a case–control study. Neurosci. Lett. 366(3) , 268–271 (2004).
  • Loeb MB , MolloyDW, SmiejaM et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer‘s disease. J. Am. Geriatr. Soc. 52(3) , 381–387 (2004).
  • Rautio J , HumphreysJE, WebsterLO et al. In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab. Dispos.34(5) , 786–792 (2006).
  • Westphal K , WeinbrennerA, ZschiescheM et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin. Pharmacol. Ther. 68(4) , 345–355 (2000).
  • Sherman BM , WestJH, KorenmanSG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J. Clin. Endocrinol. Metab.42(4) , 629–636 (1976).
  • Tang MX , JacobsD, SternY et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer‘s disease. Lancet 348(9025) , 429–432 (1996).
  • Schmidt R , KienbacherE, BenkeT et al. Sex differences in Alzheimer‘s disease. Neuropsychiatry 22(1) , 1–15 (2008).
  • Callahan MJ , LipinskiWJ, BianF, DurhamRA, PackA, WalkerLC. Augmented senile plaque load in aged female β-amyloid precursor protein-transgenic mice. Am. J. Pathol.158(3) , 1173–1177 (2001).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.