259
Views
0
CrossRef citations to date
0
Altmetric
Review

Renal Cell Carcinoma Development and miRNAs: A Possible Link to the EGFR Pathway

, , , , , & show all
Pages 1793-1803 | Published online: 05 Nov 2013

References

  • Ljungberg B , CampbellSC, ChoiHY et al. The epidemiology of renal cell carcinoma. Eur. Urol. 60(4), 615–621 (2011).
  • Ljungberg B , CowanNC, HanburyDC et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur. Urol. 58(3), 398–406 (2010).
  • Bex A , JonaschE, KirkaliZ et al. Integrating surgery with targeted therapies for renal cell carcinoma: current evidence and ongoing trials. Eur. Urol. 58(6), 819–828 (2010).
  • Eble JN , SauterG, EpsteinJI, SesterhennIA. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. IARC Press, Lyon, France (2004).
  • Szymanska K , MooreLE, RothmanN et al. TP53, EGFR, and KRAS mutations in relation to VHL inactivation and lifestyle risk factors in renal-cell carcinoma from central and eastern Europe. Cancer Lett.293(1), 92–98 (2010).
  • Patard JJ , PignotG, EscudierB et al. ICUD-EAU International Consultation on Kidney Cancer 2010: treatment of metastatic disease. Eur. Urol. 60(4), 684–690 (2011).
  • Staehler M , HasekeN, SchoepplerG, StadlerT, GratzkeC, StiefCG. Modern therapeutic approaches in metastatic renal cell carcinoma. EAU-EBU Update Series5(1), 26–37 (2007).
  • Redova M , SvobodaM, SlabyO. MicroRNAs and their target gene networks in renal cell carcinoma. Biochem. Biophys. Res. Commun.405(2), 153–156 (2011).
  • Chou A , ToonC, PickettJ, GillAJ. von Hippel-Lindau syndrome. Front. Horm. Res.41, 30–49 (2013).
  • Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin. Cancer Res.10(18 Pt 2), 6290S–6295S (2004).
  • Kondo K , KaelinWG Jr. The von Hippel-Lindau tumor suppressor gene. Exp. Cell. Res.264(1), 117–125 (2001).
  • Pugh CW , RatcliffePJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol.13(1), 83–89 (2003).
  • Lee SJ , LattoufJB, XanthopoulosJ, LinehanWM, BottaroDP, VasselliJR. von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1. Eur. Urol.54(4), 845–853 (2008).
  • Devita VTL , TheodoreS, Rosenberg, Steven A. Devita, Hellman & Rosenberg‘s Cancer: Principles & Practice of Oncology. Lippincott Williams & Wilkins, PA, USA, 4–8 (2008).
  • Smaldone MC , MaranchieJK. Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urol. Oncol.27(3), 238–245 (2009).
  • Furniss D , HardenP, AliN et al. Prognostic factors for renall cell carcinoma. Cancer Treat. Rev. 34, 407–426 (2008).
  • Smith K , GunaratnamL, MorleyM. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2 driven VHL-/- renal cancer. Cancer Res.65(12), 5221–5230 (2005).
  • Mitsudomi T , YatabeY. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J.277, 301–308 (2009).
  • Yarden Y , SliwkowskiMX. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol.2(2), 127–137 (2001).
  • Olcay E , GiovannettiE, PetersG. Drug delivery and drug resistance: EGFR-tyrosine kinase inhibitors in non-small cell lung cancer. Open Lung Cancer J.3, 26–33 (2010).
  • Liu W , InnocentiF, WuM et al. A functional common polymorphism in a Sp1 recognition site of the epidermal growth factor receptor gene promoter. Cancer Res. 65(1), 46–53 (2005).
  • Grandis J , SokJ. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol. Ther.102, 37–46 (2004).
  • Zhou L , YangH. The von Hippel-Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PLoS ONE6(9), e23936 (2011).
  • Wang Y , RocheO, YanMS et al. Regulation of endocytosis via the oxygen-sensing pathway. Nat. Med. 15(3), 319–324 (2009).
  • Shen J , XiaW, KhotskayaYB et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497(7449), 383–387 (2013).
  • Ravaud A , WallerandH, CulineS et al. Update on the medical treatment of metastatic renal cell carcinoma. Eur. Urol. 54(2), 315–325 (2008).
  • Rini BI , FlahertyK. Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urol. Oncol.26(5), 543–549 (2008).
  • Ravaud A , Gross-GoupilM. Overcoming resistance to tyrosine kinase inhibitors in renal cell carcinoma. Cancer Treat. Rev.38(8), 996–1003 (2012).
  • Gambari R , FabbriE, BorgattiM et al. Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem. Pharmacol. 82(10), 1416–1429 (2011).
  • Zhang J , ZhaoH, GaoY, ZhangW. Secretory miRNAs as novel cancer biomarkers. Biochim. Biophys. Acta1826(1), 32–43 (2012).
  • Jansson MD , LundAH. MicroRNA and cancer. Mol. Oncol.6(6), 590–610 (2012).
  • Suzuki H , MaruyamaR, YamamotoE, KaiM. DNA methylation and microRNA dysregulation in cancer. Mol. Oncol.6(6), 567–578 (2012).
  • Pereira DM , RodriguesPM, BorralhoPM, RodriguesCM. Delivering the promise of miRNA cancer therapeutics. Drug Discov. Today18(5–6), 282–289 (2013).
  • Kusenda B , MrazM, MayerJ, PospisilovaS. MicroRNA biogenesis, functionality and cancer relevance. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub.150(2), 205–215 (2006).
  • Catto JW , AlcarazA, BjartellAS et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur. Urol. 59(5), 671–681 (2011).
  • Chow TF , YoussefYM, LianidouE et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin. Biochem. 43(1–2), 150–158 (2010).
  • Marques I , TeixeiraAL, FerreiraM et al. Influence of survivin (BIRC5) and caspase-9 (CASP9) functional polymorphisms in renal cell carcinoma development: a study in a southern European population. Mol. Biol. Rep. 40(8), 4819–4826 (2013).
  • Cho WC . MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol.42(8), 1273–1281 (2010).
  • Duns G , van den Berg A, van Dijk MC et al. The entire miR-200 seed family is strongly deregulated in clear cell renal cell cancer compared with the proximal tubular epithelial cells of the kidney. Genes Chromosomes Cancer52(2), 165–173 (2012).
  • Cancer G enome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature499(7456), 43–49 (2013).
  • Zhang H , GuoY, ShangC, SongY, WuB. miR-21 downregulated TCF21 to inhibit KISS1 in renal cancer. Urology80(6), 1298–1302 (2012).
  • Cho WC . OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer6, 60 (2007).
  • Medina PP , NoldeM, SlackFJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature467(7311), 86–90 (2010).
  • Fu X , HanY, WuY et al. Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur. J. Clin. Invest. 41(11), 1245–1253 (2011).
  • Pan X , WangZX, WangR. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol. Ther.10(12), 1224–1232 (2010).
  • Liu LZ , LiC, ChenQ et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE 6(4), e19139 (2011).
  • Zhou X , RenY, MooreL et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab. Invest. 90(2), 144–155 (2010).
  • Bruning U , CeroneL, NeufeldZ et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol. Cell. Biol. 31(19), 4087–4096 (2011).
  • Shinmei S , SakamotoN, GotoK et al. MicroRNA-155 is a predictive marker for survival in patients with clear cell renal cell carcinoma. Int. J. Urol. 20(5), 468–477 (2013).
  • Juan D , AlexeG, AntesT et al. Identification of a microRNA panel for clear-cell kidney cancer. Urology 75(4), 835–841 (2010).
  • Valera VA , WalterBA, LinehanWM, MerinoMJ. Regulatory effects of microRNA-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J. Cancer2, 515–526 (2011).
  • Chan SY , LoscalzoJ. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle9(6), 1072–1083 (2010).
  • Zhao A , LiG, Peoc‘hM, GeninC, GiganteM. Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma. Exp. Mol. Pathol.94(1), 115–120 (2013).
  • Zhang C , ZhangJ, HaoJ et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J. Transl. Med. 10(1), 119 (2012).
  • Garofalo M , Di Leva G, Romano G et al. miR-221 and 222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell16(6), 498–509 (2009).
  • Shah M , CalinG. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med.3(8), 56 (2011).
  • Teixeira AL , GomesM, MedeirosR. EGFR signaling pathway and related-miRNAs in age-related diseases: the example of miR-221 and miR-222. Front. Genet.3(286), 7 (2012).
  • Wulfken LM , MoritzR, OhlmannC et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS ONE 6(9), e25787 (2011).
  • Ravi R , MookerjeeB, BhujwallaZM et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 14(1), 34–44 (2000).
  • Lou JJ , ChuaYL, ChewEH, GaoJ, BushellM, HagenT. Inhibition of hypoxia-inducible factor-1alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS ONE5(5), e10522 (2010).
  • Redova M , PoprachA, NekvindovaJ et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J. Transl. Med. 10, 55 (2012).
  • Teixeira AL , SilvaJ, FerreiraM et al. Circulating microRNA-222 in plasma – a potencial biomarker for renal cell carcinoma. Eur. J. Cancer 48(Suppl. 5), S216 (2012).
  • Wettersten HI , WeissRH. Potential biofluid markers and treatment targets for renal cell carcinoma. Nat. Rev. Urol.10(6), 336–344 (2013).
  • Jung M , MollenkopfHJ, GrimmC et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell. Mol. Med. 13(9B), 3918–3928 (2009).
  • Koturbash I , ZempFJ, PogribnyI, KovalchukO. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat. Res.722(2), 94–105 (2011).
  • Youssef YM , WhiteNM, GrigullJ et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur. Urol. 59(5), 721–730 (2011).
  • Ma L . Role of miR-10b in breast cancer metastasis. Breast Cancer Res.12(5), 26 (2010).
  • Park JK , KogureT, NuovoGJ et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res. 71(24), 7608–7616 (2011).
  • Kota J , ChivukulaRR, O‘DonnellKA et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6), 1005–1017 (2009).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.