204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genes Involved in Hemorrhagic Transformations that Follow Recombinant T-Pa Treatment in Stroke Patients

, , , , , , , , , , , , , , & show all
Pages 495-504 | Published online: 05 Apr 2013

References

  • Wahlgren N , AhmedN, DávalosA et al; SITS-MOST Investigators. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. Lancet369 , 275–282 (2007).
  • Hacke W , KasteM, BluhmkiE et al. ECASS Investigators: thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 359 , 1317–1329 (2008).
  • Lichtman JH , WatanabeE, AllenNB, JonesSB, DostalJ, GoldsteinLB. Hospital arrival time and intravenous t-PA use in US academic medical centers, 2001–2004. Stroke40 , 3845–3850 (2009).
  • Castellanos M , LeiraR, SerenaJ et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke 34 , 40–46 (2003).
  • Castellanos M , LeiraR, SerenaJ et al. Plasma cellular-fibronectin concentration predicts hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke. Stroke 35 , 1671–1676 (2004).
  • Hernandez-Guillamon M , Garcia-BonillaL, SoléM et al. Plasma VAP-1/SSAO activity predicts intracranial hemorrhages and adverse neurological outcome after tissue plasminogen activator treatment in stroke. Stroke 41 , 1528–1535 (2010).
  • Rosell A , CuadradoE, Ortega-AznarA, Hernández-GuillamonM, LoEH, MontanerJ. MMP-9-positive neutrophil infiltration is associated to blood–brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke39 , 1121–1126 (2008).
  • Cuadrado E , OrtegaL, Hernández-GuillamonM et al. Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J. Leukoc. Biol. 84 , 207–214 (2008).
  • Jickling GC , XuH, StamovaB et al. Signatures of cardioembolic and large-vessel ischemic stroke. Ann. Neurol. 68 , 681–692 (2010).
  • Tang Y , XuH, DuX et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J. Cereb. Blood Flow Metab. 26 , 1089–1102 (2006).
  • Barr TL , ConleyY, DingJ et al. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology 75 , 1009–1014 (2012).
  • Brott TG , HaleyEC, LevyDE et al. Urgent therapy for stroke, part I: pilot study of tissue plasminogen activator administered within 90 minutes. Stroke 23 , 632–640 (1992).
  • Hacke W , KasteM, FieschiC et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). JAMA 274 , 1017–1025 (1995).
  • Irizarry RA , HobbsB, CollinF, Beazer-BarclayYD, AntonellisKJ, ScherfU. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics4 , 249–264 (2003).
  • Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.3, Article 3 (2004).
  • Benjamini Y , HochbergY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. B.57 , 289–300 (1995).
  • Gentleman R , CareyV, HuberW, IrizarryR, DudoitS. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Gentleman R (Ed). Springer, NY, USA (2005).
  • Rosell A , VilaltaA, García-BerrocosoT et al. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS ONE 6 , e16750 (2011).
  • Calvano SE , XiaoW, RichardsDR et al. A network-based analysis of systemic inflammation in humans. Nature 437 , 1032–1037 (2005).
  • Kitagawa K . CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J.274 , 3210–3217 (2007).
  • Mattson MP . Calcium and neurodegeneration. Aging Cell6 , 337–350 (2007).
  • Kobayashi D , KoshidaS, MoriaiR, TsujiN, WatanabeN. Olfactomedin 4 promotes S-phase transition in proliferation of pancreatic cancer cells. Cancer Sci.98 , 334–340 (2007).
  • Parsey MV , KanekoD, ShenkarR, AbrahamE. Neutrophil apoptosis in the lung after hemorrhage or endotoxemia: apoptosis and migration are independent of interleukin-1β. Chest116(Suppl. 1) , S67–S68 (1999).
  • Mercer-Jones MA , HeinzelmannM, PeytonJC, WickelD, CookM, CheadleWG. Inhibition of neutrophil migration at the site of infection increases remote organ neutrophil sequestration and injury. Shock8 , 193–199 (1997).
  • Ueta E , TanidaT, OsakiT. A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J. Pept. Res.57 , 240–249 (2001).
  • Sorimachi K , AkimotoK, HattoriY, IeiriT, NiwaA. Activation of macrophages by lactoferrin: secretion of TNF-α, IL-8 and NO. Biochem. Mol. Biol. Int.43 , 79–87 (1997).
  • Kjeldsen L , JohnsenAH, Sengel⊘vH, BorregaardN. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatenase. J. Biol. Chem.268 , 10425–10432 (1993).
  • Axelsson L , BergenfeldtM, OhlssonK. Studies of the release and turnover of a human lipocalin. Scand. J. Clin. Lab. Invest.55 , 577–588 (1995).
  • Kuijpers TW , van der Schoot CE, Hoogerwerf M, Roos D. Cross-linking of the carcinoembryonic antigen-like glycoproteins CD66 and CD67 induces neutrophil aggregation. J. Immunol.151 , 4934–7940 (1993).
  • Skubitz KM , CampbellKD, SkubitzAP. CD66a, CD66b, CD66c, and CD66d each independently stimulate neutrophils. J. Leukoc. Biol.60 , 106–117 (1996).
  • Smolen J , BoxerL. Functions of neutrophils. In: Williams Hematology (6th Edition). McGraw-Hill Professional, NY, USA, 761–784.
  • Pak V , BudikhinaA, PashenkovM, PineginB. Neutrophil activity in chronic granulomatous disease. Adv. Exp. Med. Biol.601 , 69–74 (2007).
  • Udby L , CalafatJ, S⊘rensenOE, BorregaardN, KjeldsenL. Identification of human cysteine-rich secretory protein 3 (CRISP-3) as a matrix protein in a subset of peroxidase-negative granules of neutrophils and in the granules of eosinophils. J. Leukoc. Biol.72 , 462–469 (2002).
  • Yan L , BorregaardN, KjeldsenL, MosesMA. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J. Biol. Chem.276 , 37258–37265 (2001).
  • Fernández-Cadenas I , Del Río-Espínola A, Carrera C et al. Role of the MMP9 gene in hemorrhagic transformations after tissue-type plasminogen activator treatment in stroke patients. Stroke43(5) , 1398–1400 (2012).
  • Hernandez-Guillamon M , SoléM, DelgadoP et al. VAP-1/SSAO plasma activity and brain expression in human hemorrhagic. Stroke Cerebrovasc. Dis. 33(1) , 55–63 (2012).
  • Del Río-Espínola A , Fernández-CadenasI, GiraltD et al. A predictive clinical-genetic model of tissue plasminogen activator response in acute ischemic stroke. Ann. Neurol. 72(5) , 716–729 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.