2,136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thiopurine Pharmacogenomics: Association of Snps with Clinical Response and Functional Validation of Candidate Genes

, , , , , , , , , & show all
Pages 433-447 | Published online: 13 Mar 2014

References

  • Escherich GM , RichardsS, StorkLC, VoraAJ. Meta-analysis of randomised trials comparing thiopurines in childhood acute lymphoblastic leukaemia. Leukemia25 , 953–959 (2011).
  • Lennard L , RichardsS, CartwrightCS, MitchellC, LilleymanJS, VoraA. The thiopurine methyltransferase genetic polymorphism is associated with thioguanine-related veno-occlusive disease of the liver in children with acute lymphoblastic leukemia. Clin. Pharmacol. Ther.80(4) , 375–383 (2006).
  • Vora A , MitchellCD, LennardL et al. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 368(9544) , 1339–1348 (2006).
  • Wang L , WeinshilboumR. Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene25(11) , 1629–1638 (2006).
  • Tallen G , RateiR, MannG et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J. Clin. Oncol. 28(14) , 2339–2347 (2010).
  • Schmiegelow K , Al-ModhwahiI, AndersenMK et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 113(24) , 6077–6084 (2009).
  • Lund B , AsbergA, HeymanM et al. Risk factors for treatment related mortality in childhood acute lymphoblastic leukaemia. Pediatric Blood Cancer 56(4) , 551–559 (2010).
  • Lennard L , ReesCA, LilleymanJS, MaddocksJL. Childhood leukaemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. 1983. Br. J. Clin. Pharmacol.58(7) , S867–S871, discussion S872–S864 (2004).
  • Gaynon PS . Childhood acute lymphoblastic leukaemia and relapse. Br. J. Haematol.131(5) , 579–587 (2005).
  • Wang L , McLeodHL, WeinshilboumRM. Genomics and drug response. N. Engl. J. Med.364(12) , 1144–1153 (2011).
  • Zaza G , CheokM, KrynetskaiaN et al. Thiopurine pathway. Pharmacogenet. Genomics 20(9) , 573–574 (2010).
  • Lennard L , LewisIJ, MichelagnoliM, LilleymanJS. Thiopurine methyltransferase deficiency in childhood lymphoblastic leukaemia: 6-mercaptopurine dosage strategies. Med. Pediatr. Oncol.29(4) , 252–255 (1997).
  • Lennard L . The clinical pharmacology of 6-mercaptopurine. Euro. J. Clin. Pharmacol.43(4) , 329–339 (1992).
  • Relling MV , GardnerEE, SandbornWJ et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89(3) , 387–391 (2011).
  • Duley JA , SomogiAA, MartinJH. The future of thiopurine pharmacogenenomics. Pharmacogenomics13(14) , 1549–1552 (2012).
  • Krishnamurthy P , SchwabM, TakenakaK et al. Transporter-mediated protection against thiopurine-induced hematopoietic toxicity. Cancer Res. 68(13) , 4983–4989 (2008).
  • Janke D , MehralivandS, StrandD et al. 6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine (PMEA) transport altered by two missense mutations in the drug transporter gene ABCC4. Hum. Mutat. 29(5) , 659–669 (2008).
  • Ansari M , SautyG, LabudaM et al. Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood 114(7) , 1383–1386 (2009).
  • Stocco G , CheokMH, CrewsKR et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin. Pharmacol. Ther. 85(2) , 164–172 (2009).
  • Hawwa AF , MillershipJS, CollierPS et al. Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. Br. J. Clin. Pharmacol. 66(4) , 517–528 (2008).
  • Han S , LeeKM, ParkSK et al. Genome-wide association study of childhood acute lymphoblastic leukemia in Korea. Leuk. Res. 34(10) , 1271–1274 (2010).
  • Papaemmanuil E , HoskingFJ, VijayakrishnanJ et al. Loci on 7p12.2, 10.21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41(9) , 1006–1010 (2009).
  • Trevino LR , YangW, FrenchD et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41(9) , 1001–1005 (2009).
  • Horinouchi M , YagiM, ImanishiH et al. Association of genetic polymorphisms with hepatotoxicity in patients with childhood acute lymphoblastic leukemia or lymphoma. Pediatr. Hematol. Oncol. 27(5) , 344–354 (2010).
  • Yang JJ , ChengC, YangW et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 301(4) , 393–403 (2009).
  • Yang JJ , ChengC, DevidasM et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood 120(20) , 4197–4204 (2012).
  • Stocco GS , YangW, CrewsKR et al. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum. Mol. Genet.21(21) , 4793–4804 (2012).
  • Li L , FridleyB, KalariK et al. Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res. 68(17) , 7050–7058 (2008).
  • Wheeler HE , DolanME. Lymphoblastoid cell lines in pharmacogenomic discovery and clinical translation. Pharmacogenomics13(1) , 55–70 (2012).
  • Li F , FridleyBL, MatimbaA et al. Ecto-5´-nucleotidase and thiopurine cellular circulation: association with cytotoxicity. Drug Metab. Dispos. 38(12) , 2329–2338 (2010).
  • Ingle JN , SchaidDJ, GossPE et al. Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J. Clin. Oncol. 28(31) , 4674–4682 (2010).
  • Pei H , LiL, FridleyBL et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16(3) , 259–266 (2009).
  • Hou J , WangL. FKBP5 as a selection biomarker for gemcitabine and Akt inhibitors in treatment of pancreatic cancer. PLoS ONE7(5) , e36252 (2012).
  • Liu M , IngleJN, FridleyBL et al. TSPYL5 SNPs: association with plasma estradiol concentrations and aromatase expression. Mol. Endocrinol.27(4) , 657–670 (2013).
  • Li L , FridleyBL, KalariK et al. Gemcitabine and arabinosylcytosine pharmacogenomics: genome-wide association and drug response biomarkers. PLoS ONE 4(11) , e7765 (2009).
  • Wu Z , IrizarryRA, GentlemanR, Martinez-MurilloF, SpencerF. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc.99(468) , 909–917 (2004).
  • Mitchell CD , RichardsSM, KinseySE et al. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK medical research council ALL97 randomized trial. Br. J. Haematol. 129(6) , 734–745 (2005).
  • Lennard L , SingletonHJ. High-performance liquid chromatographic assay of human red blood cell thiopurine methyltransferase activity. J. Chromatogr.661(1) , 25–33 (1994).
  • Lennard L , SingletonHJ. High-performance liquid chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. J. Chromatogr.583(1) , 83–90 (1992).
  • Otterness D , SzumlanskiC, LennardL et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin. Pharmacol. Ther. 62(1) , 60–73 (1997).
  • Relling MV , PuiCH, EvansE. Thiopurine methyltransferase in acute lymphoblastic leukaemia. Blood107(2) , 843–844 (2006).
  • Kim H , KangHJ, KimHJ et al. Pharmacogenetic analysis of prediatric patients with acute lymphblastic leukaemia: a possible association between survival rate and ITPA polymorphism. PLoS ONE 7(9) , e45558 (2012).
  • Arenas M , DuleyJ, SumiS, SandersonJ, MarinakiA. The ITPA c.94C>A and g.IVS2+21A>C sequence variants contribute to missplicing of the ITPA gene. Biochim. Biophys. Acta1772(1) , 96–102 (2007).
  • Schmiegelow K , ForestierE, KristinssonJ et al. Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 23(3) , 557–564 (2009).
  • Jones TS , YangW, EvansWE, RellingMV. Using HapMap tools in pharmacogenomic discovery: the thiopurine methyltransferase polymorphism. Clin. Pharmacol. Ther.81(5) , 729–734 (2007).
  • Niu N , QinY, FridleyBL et al. Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 20(11) , 1482–1492 (2010).
  • Liu M , WangL, BongartzT et al. Aromatase inhibitors, estrogens and musculoskeletal pain: estrogen-dependent T-cell leukemia 1A (TCL1A) gene-mediated regulation of cytokine expression. Breast Cancer Res. 14(2) , R41 (2012).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.