294
Views
4
CrossRef citations to date
0
Altmetric
Special Report

Pharmacogenetics, Enzyme Probes and Therapeutic drug Monitoring as Potential Tools for Individualizing Taxane Therapy

, &
Pages 555-574 | Published online: 05 Apr 2013

References

  • Huizing MT , MisserVH, PietersRC et al. Taxanes: a new class of antitumor agents. Cancer Invest. 13(4) , 381–404 (1995).
  • Jordan MA , WilsonL. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer4(4) , 253–265 (2004).
  • Socinski MA , BondarenkoI, KarasevaNA et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a Phase III trial. J. Clin. Oncol. 30(17) , 2055–2062 (2012).
  • Galsky MD , DritselisA, KirkpatrickP, OhWK. Cabazitaxel. Nat. Rev. Drug Discov.9(9) , 677–678 (2010).
  • Saif MW , SarantopoulosJ, PatnaikA, TolcherAW, TakimotoC, BeeramM. Tesetaxel, a new oral taxane, in combination with capecitabine: a Phase I, dose-escalation study in patients with advanced solid tumors. Cancer Chemother. Pharmacol.68(6) , 1565–1573 (2011).
  • Lee JJ , SwainSM. Peripheral neuropathy induced by microtubule-stabilizing agents. J. Clin. Oncol.24(10) , 1633–1642 (2006).
  • Pazdur R , NewmanRA, NewmanBM et al. Phase I trial of Taxotere: five-day schedule. J. Natl. Cancer Inst. 84(23) , 1781–1788 (1992).
  • Taxol® (paclitaxel) Injection Package Insert. Bristol-Myers Squibb, Princeton, NJ, USA (2011).
  • Taxotere® (docetaxel) Injection Concentrate Package Insert. Sanofi-Aventis, Bridgewater, NJ, USA (2010).
  • Steed H , SawyerMB. Pharmacology, pharmacokinetics and pharmacogenomics of paclitaxel. Pharmacogenomics8(7) , 803–815 (2007).
  • Baker SD , SparreboomA, VerweijJ. Clinical pharmacokinetics of docetaxel : recent developments. Clin. Pharmacokinet.45(3) , 235–252 (2006).
  • Monsarrat B , MarielE, CrosS et al. Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile. Drug Metab. Dispos. 18(6) , 895–901 (1990).
  • Wiernik PH , SchwartzEL, EinzigA, StraumanJJ, LiptonRB, DutcherJP. Phase I trial of taxol given as a 24-hour infusion every 21 days: responses observed in metastatic melanoma. J. Clin. Oncol.5(8) , 1232–1239 (1987).
  • Sparreboom A , Van Tellingen O, Scherrenburg EJ et al. Isolation, purification and biological activity of major docetaxel metabolites from human feces. Drug Metab. Dispos.24(6) , 655–658 (1996).
  • van de Steeg E , van Esch A, Wagenaar E et al. High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel. Clin. Cancer Res.17(2) , 294–301 (2011).
  • Smith NF , AcharyaMR, DesaiN, FiggWD, SparreboomA. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther.4(8) , 815–818 (2005).
  • Oshiro C , MarshS, McLeodH, CarrilloM, KleinT, AltmanR. Taxane pathway. Pharmacogenet. Genomics19(12) , 979–983 (2009).
  • Shou M , MartinetM, KorzekwaKR, KrauszKW, GonzalezFJ, GelboinHV. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics8(5) , 391–401 (1998).
  • Dai D , ZeldinDC, BlaisdellJA et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11(7) , 597–607 (2001).
  • van Waterschoot RA , LagasJS, WagenaarE, RosingH, BeijnenJH, SchinkelAH. Individual and combined roles of CYP3A, P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) in the pharmacokinetics of docetaxel. Int. J. Cancer127(12) , 2959–2964 (2010).
  • Kwak JO , LeeSH, LeeGS et al. Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. Eur. J. Pharmacol. 627(1–3) , 92–98 (2010).
  • Lagas JS , VlamingML, van Tellingen O et al. Multidrug resistance protein 2 is an important determinant of paclitaxel pharmacokinetics. Clin. Cancer Res.12(20 Pt 1) , 6125–6132 (2006).
  • Bruno R , VivierN, Veyrat-FolletC, MontayG, RhodesGR. Population pharmacokinetics and pharmacokinetic–pharmacodynamic relationships for docetaxel. Invest. New Drugs19(2) , 163–169 (2001).
  • Persohn E , CantaA, SchoepferS et al. Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats. Eur. J. Cancer 41(10) , 1460–1466 (2005).
  • Bruno R , OlivaresR, BerilleJ et al. Alpha-1-acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin. Cancer Res. 9(3) , 1077–1082 (2003).
  • Weinshilboum R , WangL. Pharmacogenomics: bench to bedside. Nat. Rev. Drug Discov.3(9) , 739–748 (2004).
  • McLeod HL , CoulthardS, ThomasAE et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 105(3) , 696–700 (1999).
  • Innocenti F , UndeviaSD, IyerL et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. 22(8) , 1382–1388 (2004).
  • Bosch TM , HuitemaAD, DoodemanVD et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin. Cancer Res. 12(19) , 5786–5793 (2006).
  • Tran A , JullienV, AlexandreJ et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin. Pharmacol. Ther. 79(6) , 570–580 (2006).
  • Baker SD , VerweijJ, CusatisGA et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin. Pharmacol. Ther. 85(2) , 155–163 (2009).
  • Gréen H , SoderkvistP, RosenbergP et al. Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin. Pharmacol. Toxicol. 104(2) , 130–137 (2009).
  • Henningsson A , MarshS, LoosWJ et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin. Cancer Res. 11(22) , 8097–8104 (2005).
  • Bergmann TK , Brasch-AndersenC, GréenH et al. Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J. 11(2) , 113–120 (2011).
  • Fransson MN , GréenH, LittonJE, FribergLE. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanism-based model. Drug Metab. Dispos.39(2) , 247–255 (2011).
  • Marsh S , SomloG, LiX et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J. 7(5) , 362–365 (2007).
  • Rodriguez-Antona C . Pharmacogenomics of paclitaxel. Pharmacogenomics11(5) , 621–623 (2010).
  • Marsh S . Pharmacogenomics of taxane/platinum therapy in ovarian cancer. Int. J. Gynecol. Cancer19(Suppl. 2) , S30–S34 (2009).
  • Tsai SM , LinCY, WuSH et al. Side effects after docetaxel treatment in Taiwanese breast cancer patients with CYP3A4, CYP3A5, and ABCB1 gene polymorphisms. Clin. Chim. Acta 404(2) , 160–165 (2009).
  • Gréen H , KhanMS, Jakobsen-FalkI, Avall-LundqvistE, PetersonC. Impact of CYP3A5*3 and CYP2C8-HapC on paclitaxel/carboplatin-induced myelosuppression in patients with ovarian cancer. J. Pharm. Sci.100(100) , 4205–4209 (2011).
  • Kim KP , AhnJH, KimSB et al. Prospective evaluation of the drug-metabolizing enzyme polymorphisms and toxicity profile of docetaxel in Korean patients with operable lymph node-positive breast cancer receiving adjuvant chemotherapy. Cancer Chemother. Pharmacol. 69(5) , 1221–1227 (2012).
  • Leskelä S , JaraC, Leandro-GarcíaLJ et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J. 11(2) , 121–129 (2011).
  • Gandara DR , KawaguchiT, CrowleyJ et al. Japanese–US common-arm analysis of paclitaxel plus carboplatin in advanced non-small-cell lung cancer: a model for assessing population-related pharmacogenomics. J. Clin. Oncol. 27(21) , 3540–3546 (2009).
  • Hertz DL , Motsinger-ReifAA, DrobishA et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res. Treat.134(1) , 401–410 (2012).
  • Hertz DL , RoyS, Motsinger-ReifAA et al. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann. Oncol. doi:10.1093/annonc/mdt018 (2013) (Epub ahead of print).
  • Kroetz DL , Pauli-MagnusC, HodgesLM et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 13(8) , 481–494 (2003).
  • Kimchi-Sarfaty C , OhJM, KimIW et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811) , 525–528 (2007).
  • Fung KL , GottesmanMM. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochim. Biophys. Acta1794(5) , 860–871 (2009).
  • Sissung TM , BaumCE, DeekenJ et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin. Cancer Res.14(14) , 4543–4549 (2008).
  • Kim HS , KimMK, ChungHH et al. Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol. Oncol. 113(2) , 264–269 (2009).
  • Chang H , RhaSY, JeungHC et al. Association of the ABCB1 3435C>T polymorphism and treatment outcomes in advanced gastric cancer patients treated with paclitaxel-based chemotherapy. Oncol. Rep. 23(1) , 271–278 (2010).
  • Bergmann TK , Brasch-AndersenC, GréenH et al. Impact of ABCB1 variants on neutrophil depression: a pharmacogenomic study of paclitaxel in 92 women with ovarian cancer. Basic Clin. Pharmacol. Toxicol. 100(2) , 199–204 (2011).
  • Sissung TM , MrossK, SteinbergSM et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur. J. Cancer 42(17) , 2893–2896 (2006).
  • Pan JH , HanJX, WuJM, HuangHN, YuQZ, ShengLJ. MDR1 single nucleotide polymorphism G2677T/A and haplotype are correlated with response to docetaxel–cisplatin chemotherapy in patients with non-small-cell lung cancer. Respiration78(1) , 49–55 (2009).
  • Chang H , RhaSY, JeungHC et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann. Oncol. 20(2) , 272–277 (2009).
  • Grau JJ , CaballeroM, CampayoM et al. Gene single nucleotide polymorphism accumulation improves survival in advanced head and neck cancer patients treated with weekly paclitaxel. Laryngoscope 119(8) , 1484–1490 (2009).
  • Gréen H , SoderkvistP, RosenbergP, HorvathG, PetersonC. mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin. Cancer Res.12(3 Pt 1) , 854–859 (2006).
  • Johnatty SE , BeesleyJ, PaulJ et al. ABCB1 (MDR 1) polymorphisms and progression-free survival among women with ovarian cancer following paclitaxel/carboplatin chemotherapy. Clin. Cancer Res.14(17) , 5594–5601 (2008).
  • Kiyotani K , MushirodaT, KuboM, ZembutsuH, SugiyamaY, NakamuraY. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci.99(5) , 967–972 (2008).
  • Medeiros R , PereiraD, AfonsoN et al. Platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma: glutathione S-transferase genetic polymorphisms as predictive biomarkers of disease outcome. Int. J. Clin. Oncol. 8(3) , 156–161 (2003).
  • Sun N , SunX, ChenB et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. Cancer Chemother. Pharmacol.65(3) , 437–446 (2010).
  • Mir O , AlexandreJ, TranA et al. Relationship between GSTP1 Ile(105)Val polymorphism and docetaxel-induced peripheral neuropathy: clinical evidence of a role of oxidative stress in taxane toxicity. Ann. Oncol. 20(4) , 736–740 (2009).
  • Murray GI , TaylorMC, McFadyenMC et al. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res. 57(14) , 3026–3031 (1997).
  • Shimada T , WatanabeJ, KawajiriK et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20(8) , 1607–1613 (1999).
  • Li DN , SeidelA, PritchardMP, WolfCR, FriedbergT. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics10(4) , 343–353 (2000).
  • Hanna IH , DawlingS, RoodiN, GuengerichFP, ParlFF. Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res.60(13) , 3440–3444 (2000).
  • Bournique B , LemarieA. Docetaxel (Taxotere) is not metabolized by recombinant human CYP1B1 in vitro, but acts as an effector of this isozyme. Drug Metab. Dispos.30(11) , 1149–1152 (2002).
  • Sissung TM , DanesiR, PriceDK et al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol. Cancer Ther. 7(1) , 19–26 (2008).
  • Figg WD , LiH, SissungT et al. Pre-clinical and clinical evaluation of estramustine, docetaxel and thalidomide combination in androgen-independent prostate cancer. BJU Int. 99(5) , 1047–1055 (2007).
  • Pastina I , GiovannettiE, ChioniA et al. Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in castration-resistant prostate cancer (crpc) patients. BMC Cancer 10 , 511 (2010).
  • Leandro-García LJ , LeskeläS, JaraC et al. Regulatory polymorphisms in beta-tubulin IIa are associated with paclitaxel-induced peripheral neuropathy. Clin. Cancer Res. 18(16) , 4441–4448 (2012).
  • Leandro-García LJ , LeskeläS, Inglada-PérezL et al. Hematological beta-tubulin VI isoform exhibits genetic variability that influences paclitaxel toxicity. Cancer Res. 72(18) , 4744–4752 (2012).
  • Monzo M , RosellR, SanchezJJ et al. Paclitaxel resistance in non-small-cell lung cancer associated with beta-tubulin gene mutations. J. Clin. Oncol. 17(6) , 1786–1793 (1999).
  • Lamendola DE , DuanZ, PensonRT, OlivaE, SeidenMV. Beta tubulin mutations are rare in human ovarian carcinoma. Anticancer Res.23(1B) , 681–686 (2003).
  • Berrieman HK , LindMJ, CawkwellL. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol.5(3) , 158–164 (2004).
  • Sucheston LE , ZhaoH, YaoS et al. Genetic predictors of taxane-induced neurotoxicity in a SWOG Phase III intergroup adjuvant breast cancer treatment trial (S0221). Breast Cancer Res. Treat. 130(3) , 993–1002 (2011).
  • Baldwin RM , OwzarK, ZembutsuH et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 18(18) , 5099–5109 (2012).
  • Deeken JF , CormierT, PriceDK et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J. 10(3) , 191–199 (2010).
  • Hertz DL , McLeodHL, IrvinWJ Jr. Tamoxifen and CYP2D6: a contradiction of data. Oncologist17(5) , 620–630 (2012).
  • Frye RF . Probing the world of cytochrome P450 enzymes. Mol. Interv.4(3) , 157–162 (2004).
  • Liu YT , HaoHP, LiuCX, WangGJ, XieHG. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab. Rev.39(4) , 699–721 (2007).
  • Fujita K . Cytochrome P450 and anticancer drugs. Curr. Drug Metab.7(1) , 23–37 (2006).
  • Watkins PB , HamiltonTA, AnnesleyTM, EllisCN, KolarsJC, VoorheesJJ. The erythromycin breath test as a predictor of cyclosporine blood levels. Clin. Pharmacol. Ther.48(2) , 120–129 (1990).
  • Slaviero KA , ClarkeSJ, McLachlanAJ, BlairEY, RivoryLP. Population pharmacokinetics of weekly docetaxel in patients with advanced cancer. Br. J. Clin. Pharmacol.57(1) , 44–53 (2004).
  • Hirth J , WatkinsPB, StrawdermanM, SchottA, BrunoR, BakerLH. The effect of an individual‘s cytochrome CYP3A4 activity on docetaxel clearance. Clin. Cancer Res.6(4) , 1255–1258 (2000).
  • Hurria A , FlemingMT, BakerSD et al. Pharmacokinetics and toxicity of weekly docetaxel in older patients. Clin. Cancer Res. 12(20 Pt 1) , 6100–6105 (2006).
  • Hooker AC , Ten Tije AJ, Carducci MA et al. Population pharmacokinetic model for docetaxel in patients with varying degrees of liver function: incorporating cytochrome P4503A activity measurements. Clin. Pharmacol. Ther.84(1) , 111–118 (2008).
  • Michael M , CullinaneC, HatzimihalisA et al. Docetaxel pharmacokinetics and its correlation with two in vivo probes for cytochrome P450 enzymes: the C(14)-erythromycin breath test and the antipyrine clearance test. Cancer Chemother. Pharmacol. 69(1) , 125–135 (2012).
  • Puisset F , ChatelutE, DalencF et al. Dexamethasone as a probe for docetaxel clearance. Cancer Chemother. Pharmacol. 54(3) , 265–272 (2004).
  • Puisset F , ChatelutE, SparreboomA et al. Dexamethasone as a probe for CYP3A4 metabolism: evidence of gender effect. Cancer Chemother. Pharmacol. 60(2) , 305–308 (2007).
  • Goh BC , LeeSC, WangLZ et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J. Clin. Oncol. 20(17) , 3683–3690 (2002).
  • Hilli J , SailasL, JyrkkioS, PyrhonenS, LaineK. NCT01110291: induction of CYP3A activity and lowered exposure to docetaxel in patients with primary breast cancer. Cancer Chemother. Pharmacol.67(6) , 1353–1362 (2011).
  • Zamboni WC , CombestAJ, DeLoiaJA et al. Pharmacologic and phenotypic study of docetaxel in patients with ovarian or primary peritoneal cancer. Cancer Chemother. Pharmacol. 68(5) , 1255–1262 (2011).
  • Yamamoto N , TamuraT, KamiyaY, SekineI, KunitohH, SaijoN. Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J. Clin. Oncol.18(11) , 2301–2308 (2000).
  • Yamamoto N , TamuraT, MurakamiH et al. Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J. Clin. Oncol. 23(6) , 1061–1069 (2005).
  • Hertz DL , WalkoCM, BridgesAS et al. Pilot study of rosiglitazone as an in vivo probe of paclitaxel exposure. Br. J. Clin. Pharmacol. 74(1) , 197–200 (2012).
  • Nishio M , MatsudaM, OhyanagiF et al. Antipyrine test predicts pharmacodynamics in docetaxel and cisplatin combination chemotherapy. Lung Cancer 49(2) , 245–251 (2005).
  • Kurnik D , WoodAJ, WilkinsonGR. The erythromycin breath test reflects P-glycoprotein function independently of cytochrome P450 3A activity. Clin. Pharmacol. Ther.80(3) , 228–234 (2006).
  • van Tellingen O , HuizingMT, PandayVR, SchellensJH, NooijenWJ, BeijnenJH. Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients. Br. J. Cancer81(2) , 330–335 (1999).
  • Connolly RM , RudekMA, Garrett-MayerE et al. Docetaxel metabolism is not altered by imatinib: findings from an early phase study in metastatic breast cancer. Breast Cancer Res. Treat. 127(1) , 153–162 (2011).
  • Kirchheiner J , ThomasS, BauerS et al. Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin. Pharmacol. Ther. 80(6) , 657–667 (2006).
  • Tornio A , NiemiM, NeuvonenPJ, BackmanJT. Trimethoprim and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab. Dispos.36(1) , 73–80 (2008).
  • Kinirons MT , O‘SheaD, KimRB et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin. Pharmacol. Ther. 66(3) , 224–231 (1999).
  • Galpin AJ , EvansWE. Therapeutic drug monitoring in cancer management. Clin. Chem.39(11 Pt 2) , 2419–2430 (1993).
  • Rousseau A , MarquetP. Application of pharmacokinetic modelling to the routine therapeutic drug monitoring of anticancer drugs. Fundam. Clin. Pharmacol.16(4) , 253–262 (2002).
  • Bruno R , HilleD, RivaA et al. Population pharmacokinetics/pharmacodynamics of docetaxel in Phase II studies in patients with cancer. J. Clin. Oncol. 16(1) , 187–196 (1998).
  • Charles KA , RivoryLP, StocklerMR et al. Predicting the toxicity of weekly docetaxel in advanced cancer. Clin. Pharmacokinet. 45(6) , 611–622 (2006).
  • Ozawa K , MinamiH, SatoH. Logistic regression analysis for febrile neutropenia (FN) induced by docetaxel in Japanese cancer patients. Cancer Chemother. Pharmacol.62(3) , 551–557 (2008).
  • Minami H , KawadaK, SasakiY et al. Pharmacokinetics and pharmacodynamics of protein-unbound docetaxel in cancer patients. Cancer Sci. 97(3) , 235–241 (2006).
  • Sandstrom M , LindmanH, NygrenP, LidbrinkE, BerghJ, KarlssonMO. Model describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin–docetaxel regimen in breast cancer patients. J. Clin. Oncol.23(3) , 413–421 (2005).
  • Baker SD , LiJ, ten Tije AJ et al. Relationship of systemic exposure to unbound docetaxel and neutropenia. Clin. Pharmacol. Ther.77(1) , 43–53 (2005).
  • Engels FK , LoosWJ, van der Bol JM et al. Therapeutic drug monitoring for the individualization of docetaxel dosing: a randomized pharmacokinetic study. Clin. Cancer Res.17(2) , 353–362 (2011).
  • Huizing MT , KeungAC, RosingH et al. Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. J. Clin. Oncol. 11(11) , 2127–2135 (1993).
  • Jiko M , YanoI, SatoE et al. Pharmacokinetics and pharmacodynamics of paclitaxel with carboplatin or gemcitabine, and effects of CYP3A5 and MDR1 polymorphisms in patients with urogenital cancers. Int. J. Clin. Oncol. 12(4) , 284–290 (2007).
  • Gianni L , KearnsCM, GianiA et al. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J. Clin. Oncol. 13(1) , 180–190 (1995).
  • Joerger M , HuitemaAD, RichelDJ et al. Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin. Cancer Res. 13(21) , 6410–6418 (2007).
  • Ohtsu T , SasakiY, TamuraT et al. Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion. Clin. Cancer Res. 1(6) , 599–606 (1995).
  • Mould DR , FlemingGF, DarcyKM, SpriggsD. Population analysis of a 24-h paclitaxel infusion in advanced endometrial cancer: a gynaecological oncology group study. Br. J. Clin. Pharmacol.62(1) , 56–70 (2006).
  • Mielke S , SparreboomA, SteinbergSM et al. Association of paclitaxel pharmacokinetics with the development of peripheral neuropathy in patients with advanced cancer. Clin. Cancer Res. 11(13) , 4843–4850 (2005).
  • Miller AA , RosnerGL, EgorinMJ, HollisD, LichtmanSM, RatainMJ. Prospective evaluation of body surface area as a determinant of paclitaxel pharmacokinetics and pharmacodynamics in women with solid tumors: Cancer and Leukemia Group B Study 9763. Clin. Cancer Res.10(24) , 8325–8331 (2004).
  • Nakajima M , FujikiY, KyoS et al. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J. Clin. Pharmacol. 45(6) , 674–682 (2005).
  • Kobayashi M , ObaK, SakamotoJ et al. Pharmacokinetic study of weekly administration dose of paclitaxel in patients with advanced or recurrent gastric cancer in Japan. Gastric Cancer 10(1) , 52–57 (2007).
  • Huizing MT , GiacconeG, van Warmerdam LJ et al. Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. The European Cancer Centre. J. Clin. Oncol.15(1) , 317–329 (1997).
  • Woo MH , RellingMV, SonnichsenDS et al. Phase I targeted systemic exposure study of paclitaxel in children with refractory acute leukemias. Clin. Cancer Res. 5(3) , 543–549 (1999).
  • de Jonge ME , van den Bongard HJ, Huitema AD et al. Bayesian pharmacokinetically guided dosing of paclitaxel in patients with non-small cell lung cancer. Clin. Cancer Res.10(7) , 2237–2244 (2004).
  • Joerger M , KraffS, HuitemaAD et al. Evaluation of a pharmacology-driven dosing algorithm of 3-weekly paclitaxel using therapeutic drug monitoring: a pharmacokinetic–pharmacodynamic simulation study. Clin. Pharmacokinet. 51(9) , 607–617 (2012).
  • Hugh J , HansonJ, CheangMC et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J. Clin. Oncol. 27(8) , 1168–1176 (2009).
  • Roychowdhury S , IyerMK, RobinsonDR et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3(111) , 111ra121 (2011).
  • Mielke S . Individualized pharmacotherapy with paclitaxel. Curr. Opin. Oncol.19(6) , 586–589 (2007).
  • Rizzo R , SpaggiariF, IndelliM et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res. Treat. 124(2) , 593–598 (2010).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.