1,024
Views
0
CrossRef citations to date
0
Altmetric
Review

Rare-Variant Genome-Wide Association Studies: A New Frontier in Genetic Analysis of Complex Traits

Pages 413-424 | Published online: 25 Feb 2013

References

  • Hall TO , WanJY, MataIF et al. Risk prediction for complex diseases: application to Parkinson disease. Genet. Med. doi:10.1038/gim.2012.109 (2012) (Epub ahead of print).
  • Hindorff LA , SethupathyP, JunkinsHA et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106 , 9362–9367 (2009).
  • Manolio TA , CollinsFS, CoxNJ et al. Finding the missing heritability of complex diseases. Nature 461 , 747–753 (2009).
  • Eichler EE , FlintJ, GibsonG et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11 , 446–450 (2010).
  • Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet.69 , 124–137 (2001).
  • Bodmer W , BonillaC. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet.40 , 695–701 (2008).
  • The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature491 , 56–65 (2012).
  • Risch N , MerikangasK. The future of genetic studies of complex human diseases. Science273 , 1516–1517 (1996).
  • Kruglyak L . Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet.22 , 139–144 (1999).
  • The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature449 , 851–861 (2007).
  • Abecasis GR , AltshulerD, AutonA, et al.; The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature467 , 1061–1073 (2010).
  • The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447 , 661–678 (2007).
  • Scuteri A , SannaS, Chen W-M et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet.3 , e115 (2007).
  • Frayling TM , TimpsonNJ, WeedonMN et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316 , 889–894 (2007).
  • Loos RJF , LindgrenCM, LiS et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40 , 768–775 (2008).
  • Willer CJ , SpeliotesEK, LoosRJ et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41 , 25–34 (2009).
  • Thorleifsson G , WaltersGB, GudbjartssonDF et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41 , 18–24 (2009).
  • Speliotes EK , WillerCJ, BerndtSI et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42 , 937–948 (2010).
  • Lango Allen H , EstradaK, LettreG et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467 , 832–838 (2010).
  • Yang J , ManolioTA, PasqualeLR et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43 , 519–525 (2011).
  • Morris AP , VoightBF, TeslovichTM et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of Type 2 diabetes. Nat. Genet. 44 , 981–990 (2012).
  • Nicolae DL , GamazonE, ZhangW, DuanS, DolanME, CoxNJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet.6 , e1000888 (2010).
  • Shea J , AgarwalaV, PhilippakisAA et al. Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with Type 2 diabetes and myocardial infarction. Nat. Genet. 43 , 801–805 (2011).
  • Dickson SP , WangK, KrantzI, HakonarsonH, GoldsteinDB. Rare variants create synthetic genome-wide associations. PLoS Biol.8 , e1000294 (2010).
  • Scherag A , JarickI, GrotheJ et al. Investigation of a genome wide association signal for obesity: synthetic association and haplotype analyses at the melanocortin 4 receptor gene locus. PLoS ONE 5 , e13967 (2010).
  • Solus JF , AriettaBJ, HarrisJR et al. Genetic variation in eleven Phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 5 , 895–931 (2004).
  • MacArthur DG , BalasubramanianS, FrankishA et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335 , 823–828 (2012).
  • Cohen JC , KissRS, PertsemlidisA, MarcelYL, McPhersonR, HobbsHH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science305 , 869–872 (2004).
  • Fearnhead NS , WildingJL, WinneyB et al. Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc. Natl Acad. Sci. USA 101 , 15992–15997 (2004).
  • Cohen J , PertsemlidisA, KotowskiIK, GrahamR, GarciaCK, HobbsHH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet.37 , 161–165 (2005).
  • Cohen JC , PertsemlidisA, FahmiS et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc. Natl Acad. Sci. USA 103 , 1810–1815 (2006).
  • Romeo S , PennacchioLA, FuY et al. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat. Genet. 39 , 513–516 (2007).
  • Sandilands A , Terron-KwiatkowskiA, HullPR et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat. Genet. 39 , 650–654 (2007).
  • Ji W , FooJN, O‘RoakBJ et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40 , 592–599 (2008).
  • Nejentsev S , WalkerN, RichesD, EgholmM, ToddJA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against Type 1 diabetes. Science324 , 387–389 (2009).
  • Tang W , FuYP, FigueroaJD et al. Mapping of the UGT1A locus identifies an uncommon coding variant that affects mRNA expression and protects from bladder cancer. Hum. Mol. Genet. 21 , 1918–1930 (2012).
  • Pavlikova M , SokolovaJ, JanosikovaB et al. Rare allelic variants determine folate status in an unsupplemented European population. J. Nutr. 142 , 1403–1409 (2012).
  • Rivas MA , BeaudoinM, GardetA et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43 , 1066–1073 (2011).
  • Bonnefond A , ClementN, FawcettK et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to Type 2 diabetes. Nat. Genet. 44 , 297–301 (2012).
  • Cooper GM , ShendureJ. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet.12 , 628–640 (2011).
  • Morgenthaler S , ThillyWG. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat. Res.615 , 28–56 (2007).
  • Li B , LealSM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet.83 , 311–321 (2008).
  • Madsen BE , BrowningSR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet.5 , e1000384 (2009).
  • Wu MC , LeeS, CaiT, LiY, BoehnkeM, LinX. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet.89 , 82–93 (2011).
  • Neale BM , RivasMA, VoightBF et al. Testing for an unusual distribution of rare variants. PLoS Genet. 7 , e1001322 (2011).
  • Price AL , KryukovGV, de Bakker PI et al. Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet.86 , 832–838 (2010).
  • Lee S , EmondMJ, BamshadMJ et al. Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am. J. Hum. Genet. 91 , 224–237 (2012).
  • Chen LS , HsuL, GamazonER, CoxNJ, NicolaeDL. An exponential combination procedure for set-based association tests in sequencing studies. Am. J. Hum. Genet.91(6) , 977–986 (2012).
  • Basu S , PanW. Comparison of statistical tests for disease association with rare variants. Genet. Epidemiol.35 , 606–619 (2011).
  • Do R , KathiresanS, AbecasisGR. Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum. Mol. Genet.21 , R1–R9 (2012).
  • Kiezun A , GarimellaK, DoR et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44 , 623–630 (2012).
  • Nelson MR , WegmannD, EhmMG et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337 , 100–104 (2012).
  • Mathieson I , McVeanG. Differential confounding of rare and common variants in spatially structured populations. Nat. Genet.44 , 243–246 (2012).
  • Wheeler DA , SrinivasanM, EgholmM et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452 , 872–876 (2008).
  • Ng SB , TurnerEH, RobertsonPD et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261) , 272–276 (2009).
  • Tennessen JA , BighamAW, O‘ConnorTD et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337 , 64–69 (2012).
  • Ng SB , BuckinghamKJ, LeeC et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42 , 30–35 (2010).
  • Bamshad MJ , NgSB, BighamAW et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12 , 745–755 (2011).
  • Marchini J , HowieB. Genotype imputation for genome-wide association studies. Nat. Rev. Genet.11 , 499–511 (2010).
  • Stacey SN , SulemP, JonasdottirA et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat. Genet. 43 , 1098–1103 (2011).
  • Rafnar T , GudbjartssonDF, SulemP et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat. Genet. 43 , 1104–1107 (2011).
  • Sulem P , GudbjartssonDF, WaltersGB et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 43 , 1127–1130 (2011).
  • Gudmundsson J , SulemP, GudbjartssonDF et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat. Genet. 44(12) , 1326–1329 (2012).
  • Jonsson T , StefanssonH, SteinbergS et al. Variant of TREM2 associated with the risk of alzheimer‘s disease. N. Engl. J. Med. 368 , 107–116 (2013).
  • Auer Paul L , Johnsen Jill M, Johnson Andrew D et al. Imputation of exome sequence variants into population- based samples and blood-cell-trait-associated loci in African Americans: NHLBI GO Exome Sequencing Project. Am. J. Hum. Genet.91 , 794–808 (2012).
  • Pasaniuc B , RohlandN, McLarenPJ et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44 , 631–635 (2012).
  • Voight BF , KangHM, DingJ et al. The Metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8 , e1002793 (2012).
  • Huyghe JR , JacksonAU, FogartyMP et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat. Genet. 45 , 197–201 (2013).
  • Kim DS , BurtAA, CrosslinDR et al. Novel common and rare genetic determinants of paraoxonase activity: FTO, SERPINA12, and ITGAL. J. Lipid Res. 54 , 552–560 (2013).
  • Dunham I , KundajeA, AldredSF et al.; ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature489 , 57–74 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.